phenotypic characterization
Recently Published Documents





Kuldeep Tripathi ◽  
R. K. Pamarthi ◽  
Padmavati G. Gore ◽  
S. Nagaraju ◽  
Latha Madhavan ◽  

Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 117
Haolong Wang ◽  
Timothy J. Bruce ◽  
Baofeng Su ◽  
Shangjia Li ◽  
Rex A. Dunham ◽  

The hybrid between female channel catfish (Ictalurus punctatus) and male blue catfish (Ictalurus furcatus) is superior in feed conversion, disease resistance, carcass yield, and harvestability compared to both parental species. However, heterosis and heterobeltiosis only occur in pond culture, and channel catfish grow much faster than the other genetic types in small culture units. This environment-dependent heterosis is intriguing, but the underlying genetic mechanisms are not well understood. In this study, phenotypic characterization and transcriptomic analyses were performed in the channel catfish, blue catfish, and their reciprocal F1s reared in tanks. The results showed that the channel catfish is superior in growth-related morphometrics, presumably due to significantly lower innate immune function, as investigated by reduced lysozyme activity and alternative complement activity. RNA-seq analysis revealed that genes involved in fatty acid metabolism/transport are significantly upregulated in channel catfish compared to blue catfish and hybrids, which also contributes to the growth phenotype. Interestingly, hybrids have a 40–80% elevation in blood glucose than the parental species, which can be explained by a phenomenon called transgressive expression (overexpression/underexpression in F1s than the parental species). A total of 1140 transgressive genes were identified in F1 hybrids, indicating that 8.5% of the transcriptome displayed transgressive expression. Transgressive genes upregulated in F1s are enriched for glycan degradation function, directly related to the increase in blood glucose level. This study is the first to explore molecular mechanisms of environment-dependent heterosis/heterobeltiosis in a vertebrate species and sheds light on the regulation and evolution of heterosis vs. hybrid incompatibility.

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262479
Yuhua Zhang ◽  
An O. Van Laer ◽  
Catalin F. Baicu ◽  
Lily S. Neff ◽  
Stanley Hoffman ◽  

Heart failure is a leading cause of hospitalizations and mortality worldwide. Heart failure with a preserved ejection fraction (HFpEF) represents a significant clinical challenge due to the lack of available treatment modalities for patients diagnosed with HFpEF. One symptom of HFpEF is impaired diastolic function that is associated with increases in left ventricular stiffness. Increases in myocardial fibrillar collagen content is one factor contributing to increases in myocardial stiffness. Cardiac fibroblasts are the primary cell type that produce fibrillar collagen in the heart. However, relatively little is known regarding phenotypic changes in cardiac fibroblasts in HFpEF myocardium. In the current study, cardiac fibroblasts were established from left ventricular epicardial biopsies obtained from patients undergoing cardiovascular interventions and divided into three categories: Referent control, hypertension without a heart failure designation (HTN (-) HFpEF), and hypertension with heart failure (HTN (+) HFpEF). Biopsies were evaluated for cardiac myocyte cross-sectional area (CSA) and collagen volume fraction. Primary fibroblast cultures were assessed for differences in proliferation and protein expression of collagen I, Membrane Type 1-Matrix Metalloproteinase (MT1-MMP), and α smooth muscle actin (αSMA). Biopsies from HTN (-) HFpEF and HTN (+) HFpEF exhibited increases in myocyte CSA over referent control although only HTN (+) HFpEF exhibited significant increases in fibrillar collagen content. No significant changes in proliferation or αSMA was detected in HTN (-) HFpEF or HTN (+) HFpEF cultures versus referent control. Significant increases in production of collagen I was detected in HF (-) HFpEF fibroblasts, whereas significant decreases in MT1-MMP levels were measured in HTN (+) HFpEF cells. We conclude that epicardial biopsies provide a viable source for primary fibroblast cultures and that phenotypic differences are demonstrated by HTN (-) HFpEF and HTN (+) HFpEF cells versus referent control.

mBio ◽  
2022 ◽  
Aya Hefnawy ◽  
Gabriel Negreira ◽  
Marlene Jara ◽  
James A. Cotton ◽  
Ilse Maes ◽  

Humans and their pathogens are continuously locked in a molecular arms race during which the eventual emergence of pathogen drug resistance (DR) seems inevitable. For neglected tropical diseases (NTDs), DR is generally studied retrospectively once it has already been established in clinical settings.

2022 ◽  
Vol 12 (1) ◽  
Federica Rubbino ◽  
Valentina Garlatti ◽  
Valeria Garzarelli ◽  
Luca Massimino ◽  
Salvatore Spanò ◽  

AbstractGPR120 (encoded by FFAR4 gene) is a receptor for long chain fatty acids, activated by ω-3 Polyunsaturated Fatty Acids (PUFAs), and expressed in many cell types. Its role in the context of colorectal cancer (CRC) is still puzzling with many controversial evidences. Here, we explored the involvement of epithelial GPR120 in the CRC development. Both in vitro and in vivo experiments were conducted to mimic the conditional deletion of the receptor from gut epithelium. Intestinal permeability and integrity of mucus layer were assessed by using Evans blue dye and immunofluorescence for MUC-2 protein, respectively. Microbiota composition, presence of lipid mediators and short chain fatty acids were analyzed in the stools of conditional GPR120 and wild type (WT) mice. Incidence and grade of tumors were evaluated in all groups of mice before and after colitis-associated cancer. Finally, GPR120 expression was analyzed in 9 human normal tissues, 9 adenomas, and 17 primary adenocarcinomas. Our work for the first time highlights the role of the receptor in the progression of colorectal cancer. We observed that the loss of epithelial GPR120 in the gut results into increased intestinal permeability, microbiota translocation and dysbiosis, which turns into hyperproliferation of epithelial cells, likely through the activation of β -catenin signaling. Therefore, the loss of GPR120 represents an early event of CRC, but avoid its progression as invasive cancer. these results demonstrate that the epithelial GPR120 receptor is essential to maintain the mucosal barrier integrity and to prevent CRC developing. Therefore, our data pave the way to GPR120 as an useful marker for the phenotypic characterization of CRC lesions and as new potential target for CRC prevention.

2022 ◽  
Vol 12 ◽  
Eiseul Kim ◽  
Seung-Min Yang ◽  
Dayoung Kim ◽  
Hae-Yeong Kim

Lacticaseibacillus casei, Lacticaseibacillus chiayiensis, and Lacticaseibacillus zeae are very closely related Lacticaseibacillus species. L. casei has long been proposed as a probiotic, whereas studies on functional characterization for L. chiayiensis and L. zeae are some compared to L. casei. In this study, L. casei FBL6, L. chiayiensis FBL7, and L. zeae FBL8 were isolated from raw milk, and their probiotic properties were investigated. Genomic analysis demonstrated the role of L. chiayiensis and L. zeae as probiotic candidates. The three strains were tolerant to acid and bile salt, with inhibitory action against pathogenic bacterial strains and capacity of antioxidants. Complete genome sequences of the three strains were analyzed to highlight the probiotic properties at the genetic level, which results in the discovery of genes corresponding to phenotypic characterization. Moreover, genes known to confer probiotic characteristics were identified, including genes related to biosynthesis, defense machinery, adhesion, and stress adaptation. The comparative genomic analysis with other available genomes revealed 256, 214, and 32 unique genes for FBL6, FBL7, and FBL8, respectively. These genomes contained individual genes encoding proteins that are putatively involved in carbohydrate transport and metabolism, prokaryotic immune system for antiviral defense, and physiological control processes. In particular, L. casei FBL6 had a bacteriocin gene cluster that was not present in other genomes of L. casei, resulting in this strain may exhibit a wide range of antimicrobial activity compared to other L. casei strains. Our data can help us understand the probiotic functionalities of the three strains and suggest that L. chiayiensis and L. zeae species, which are closely related to L. casei, can also be considered as novel potential probiotic candidate strains.

Sumedha Bobade ◽  
K. Vijayarani ◽  
K.G. Tirumurugaan ◽  
A. Thangavelu ◽  
S. Vairamuthu

Background: Campylobacter species are a leading cause of most important food-borne diarrhoeal illness worldwide while, poultry has been identified as a significant cause of Campylobacter infection in humans. C. jejuni is highly effective in colonizing chicken intestinal mucosa without causing any clinical manifestations and the consumption of poultry meat is the major source of transmission of bacteria to humans. Methods: The total of 19 chicken meat samples collected from retail markets in Chennai were screened by cultural examination, further subjected to phenotypic characterization using biochemical test and genotypic characterization using polymerase chain reaction assay targeting hip O and map A genes. Result: All the isolates showed growth on modified blood free charcoal cefoperazone deoxycholate agar media (mCCDA) and 18 (94.73%) samples showed typical morphological characteristics. The 12 (63.15%) isolates showed biochemical reactions positive. The results from polymerase chain reaction showed that 10 (83.33%) isolates were positive for C. jejuni. This study suggested that, it is essential to investigate the incidence of Campylobacter jejuni infection in poultry and the risk factors at all production stages of meat production to help reducing the disease in humans in terms of food safety.

Sign in / Sign up

Export Citation Format

Share Document