Two novel ascomycetous yeast species, Wickerhamomyces scolytoplatypi sp. nov. and Cyberlindnera xylebori sp. nov., isolated from ambrosia beetle galleries

2013 ◽  
Vol 63 (Pt_7) ◽  
pp. 2706-2711 ◽  
Author(s):  
Shinya Ninomiya ◽  
Kozaburo Mikata ◽  
Hisashi Kajimura ◽  
Hiroko Kawasaki

Thirteen strains of yeasts were isolated from ambrosia beetle galleries at several sites in Japan. Based on the morphological and biochemical characteristics and phylogenetic analysis of the D1/D2 domain of the large subunit (LSU) rRNA gene of the yeasts, 10 strains were shown to represent a novel species of the genus Wickerhamomyces, described as Wickerhamomyces scolytoplatypi sp. nov. (type strain NBRC 11029T = CBS 12186T), and were closely related to Wickerhamomyces hampshirensis. The three other strains represented a novel species of the genus Cyberlindnera, described as Cyberlindnera xylebori sp. nov. (type strain NBRC 11048T = CBS 12187T), and were closely related to Cyberlindnera euphorbiiphila. It is suggested that these species are associated with ambrosia beetles and we consider ambrosia beetle galleries as good sources of novel yeasts.

2013 ◽  
Vol 63 (Pt_1) ◽  
pp. 393-397 ◽  
Author(s):  
Stephen A. James ◽  
Enrique Javier Carvajal Barriga ◽  
Patricia Portero Barahona ◽  
Kathryn Cross ◽  
Christopher J. Bond ◽  
...  

In the course of an on-going study aimed at cataloguing the natural yeast biodiversity found in Ecuador, two strains (CLQCA 13-025 and CLQCA 20-004T) were isolated from samples of cow manure and rotten wood collected in two separate provinces of the country (Orellana and Bolívar). These strains were found to represent a novel yeast species based on the sequences of their D1/D2 domain of the large-subunit (LSU) rRNA gene and their physiological characteristics. Phylogenetic analysis based on LSU D1/D2 sequences revealed this novel species to belong to the Metschnikowia clade and to be most closely related to Candida suratensis, a species recently discovered in a mangrove forest in Thailand. The species name of Candida ecuadorensis sp. nov. is proposed to accommodate these strains, with strain CLQCA 20-004T ( = CBS 12653T = NCYC 3782T) designated as the type strain.


2004 ◽  
Vol 54 (6) ◽  
pp. 2431-2435 ◽  
Author(s):  
Hui-Zhong Lu ◽  
Yimin Cai ◽  
Zuo-Wei Wu ◽  
Jian-Hua Jia ◽  
Feng-Yan Bai

In an investigation of the yeast biota involved in silage deterioration, a considerable number of strains belonging to Saccharomyces and related genera were isolated from aerobically deteriorating corn silage in Tochigi, Japan. Analysis of sequences of the internal transcribed spacer and the large-subunit rRNA gene D1/D2 domain and electrophoretic karyotyping indicated that two of the strains, NS 14T and NS 26, represent a novel species with close phylogenetic relationships to Kazachstania servazzii and Kazachstania unispora. It is proposed that the novel species be named Kazachstania aerobia sp. nov., with NS 14T (=AS 2.2384T=CBS 9918T) as the type strain.


2015 ◽  
Vol 65 (Pt_8) ◽  
pp. 2466-2471 ◽  
Author(s):  
Melissa Fontes Landell ◽  
Luciana R. Brandão ◽  
Silvana V. B. Safar ◽  
Fatima C. O. Gomes ◽  
Ciro R. Félix ◽  
...  

Two independent surveys of yeasts associated with different bromeliads in different Brazilian regions led to the proposal of a novel yeast species, Bullera vrieseae sp. nov., belonging to the Tremellales clade (Agaricomycotina, Basidiomycota). Analysis of the sequences in the internal transcribed spacer (ITS) region and D1/D2 domain of the LSU rRNA gene suggested affinity to a phylogenetic lineage that includes Bullera miyagiana and Bullera sakaeratica. Six isolates of the novel species were obtained from different bromeliads and regions in Brazil. Sequence analysis of the D1/D2 domains of the large subunit of the rRNA gene showed that the novel species differs from B. miyagiana and B. sakaeratica by 85 and 64 nt substitutions, respectively and by more than 75 nt substitutions in the ITS region. Phenotypically, Bullera vrieseae sp. nov. can be distinguished from both species based on the assimilation of meso-erythritol, which was negative for B. vrieseae sp. nov. but positive for the others, assimilation of d-glucosamine, which was positive for B. vrieseae sp. nov. but negative for B. miyagiana and of l-sorbose, which was negative for B. vrieseae sp. nov. but positive for B. sakaeratica. The novel species Bullera vrieseae sp. nov. is proposed to accommodate these isolates. The type strain of Bullera vrieseae sp. nov. is UFMG-CM-Y379T (BRO443T; ex-type CBS 13870T).


2020 ◽  
Vol 70 (3) ◽  
pp. 2103-2107
Author(s):  
Chin-Feng Chang ◽  
Yi-Ru Liu ◽  
Ching-Fu Lee

Four strains of anamorphic yeasts isolated from the fruiting bodies of mushrooms collected in Taiwan were found to represent two novel yeast species belonging to the genus Teunomyces, which was formally known as the Candida kruisii clade. Strains NY13M09T and NY14M14 were related to the type strains of Teunomyces panamensis, T. pallodes, T. tritomae and T. lycoperdinae, and strains GG4M07T and GG6M14 were related to T. kruisii NRRL Y-17087T and T. cretensis NRRL Y-27777T. However, strains NY13M09T and NY14M14 differed from their closest phylogenetic neighbours by 2.9–3.7 % in the D1/D2 domain sequence of the LSU rRNA gene and by 6.6–13.7 % in the internal transcribed spacer (ITS); GG4M07T and GG6M14 differed from their closest known species by 2.4 % in the D1/D2 domain sequence of the LSU rRNA gene and by 8.7–10.0 % in the ITS. Meanwhile, these strains were also clearly distinguished from their closest relatives based on the results of physiological tests. Based on the characteristics described above, the strains could be regarded as representing two novel species of the genus Teunomyces, for which the names Teunomyces basidiocarpi sp. nov. and Teunomyces luguensis sp. nov. are proposed. The holotypes are Teunomyces basidiocarpi BCRC 23475T and Teunomyces luguensis BCRC 23476T.


2011 ◽  
Vol 61 (2) ◽  
pp. 454-461 ◽  
Author(s):  
Somjit Am-In ◽  
Savitree Limtong ◽  
Wichien Yongmanitchai ◽  
Sasitorn Jindamorakot

Five strains (RV5T, RV140, R31T, RS17 and RS28T) representing three novel anamorphic ascomycetous yeast species were isolated by membrane filtration from estuarine waters collected from a mangrove forest in Laem Son National Park, Ranong Province, Thailand, on different occasions. On the basis of morphological, biochemical, physiological and chemotaxonomic characteristics, sequence analysis of the D1/D2 domain of the large-subunit rRNA gene and the internal transcribed spacer region and phylogenetic analysis, three strains were found to represent two novel Candida species. Two strains (RV5T and RV140) represented a single novel species, for which the name Candida laemsonensis sp. nov. is proposed. The type strain is RV5T (=BCC 35154T =NBRC 105873T =CBS 11419T). Strain R31T was assigned to a novel species that was named Candida andamanensis sp. nov. (type strain R31T =BCC 25965T =NBRC 103862T =CBS 10859T). On the basis of morphological, biochemical, physiological and chemotaxonomic characteristics, sequence analysis of the D1/D2 domain of the large-subunit rRNA gene and phylogenetic analysis, strains RS17 and RS28T represented another novel species of Candida, for which the name Candida ranongensis sp. nov. is proposed. The type strain is RS28T (=BCC 25964T =NBRC 103861T =CBS 10861T).


2020 ◽  
Vol 70 (12) ◽  
pp. 6307-6312
Author(s):  
João Drumonde-Neves ◽  
Neža Čadež ◽  
Yazmid Reyes-Domínguez ◽  
Andreas Gallmetzer ◽  
Dorit Schuller# ◽  
...  

During a study of yeast diversity in Azorean vineyards, four strains were isolated which were found to represent a novel yeast species based on the sequences of the internal transcribed spacer (ITS) region (ITS1-5.8S–ITS2) and of the D1/D2 domain of the large subunit (LSU) rRNA gene, together with their physiological characteristics. An additional strain isolated from Drosophila suzukii in Italy had identical D1/D2 sequences and very similar ITS regions (five nucleotide substitutions) to the Azorean strains. Phylogenetic analysis using sequences of the ITS region and D1/D2 domain showed that the five strains are closely related to Clavispora lusitaniae, although with 56 nucleotide differences in the D2 domain. Intraspecies variation revealed between two and five nucleotide differences, considering the five strains of Clavispora santaluciae. Some phenotypic discrepancies support the separation of the new species from their closely related ones, such as the inability to grow at temperatures above 35 °C, to produce acetic acid and the capacity to assimilate starch. Neither conjugations nor ascospore formation were observed in any of the strains. The name Clavispora santaluciae f.a., sp. nov., is proposed to accommodate the above noted five strains (holotype, CBS 16465T; MycoBank no., MB 835794).


2012 ◽  
Vol 62 (Pt_6) ◽  
pp. 1434-1437 ◽  
Author(s):  
Chin-Feng Chang ◽  
Li-Yin Huang ◽  
Shan-Fu Chen ◽  
Ching-Fu Lee

Three apiculate yeast strains, EJ7M09T, GJ5M15 and GJ15M04, isolated from mushrooms in Taiwan were found to represent a novel species of the genus Kloeckera. The phylogenetically closest relative of this novel species is Hanseniaspora occidentalis, but the type strain of H. occidentalis differed by 4.6 % divergence (25 substitutions; 5 gaps) in the sequence of the D1/D2 domain of the large subunit rRNA gene. This difference clearly suggests that the three strains represent a distinct species. As none of the strains that were examined in this study produced ascospores or exhibited conjugation on common sporulation medium either alone or in a pairwise mixture, this species could be considered as an anamorphic member of the genus Hanseniaspora, and a novel species, Kloeckera taiwanica sp. nov., is proposed, with EJ7M09T ( = BCRC 23182T = CBS 11434T) as the type strain.


2014 ◽  
Vol 64 (Pt_9) ◽  
pp. 3053-3057 ◽  
Author(s):  
Pirapan Polburee ◽  
Wichien Yongmanitchai ◽  
Takao Ohashi ◽  
Kazuhito Fujiyama ◽  
Savitree Limtong

Two strains, DMKU-UbN24(1)T and DMKU-CPN24(1), of a novel yeast species were obtained from soil and palm oil fruit, respectively, collected in Thailand by an enrichment isolation technique using a nitrogen-limited medium containing glycerol as the sole source of carbon. On the basis of morphological, biochemical, physiological and chemotaxonomic characteristics and sequence analysis of the D1/D2 region of the large subunit (LSU) rRNA gene and the internal transcribed spacer (ITS) region, the two strains were found to represent a novel species of the genus Barnettozyma although the formation of ascospores was not observed. The novel species was related most closely to the type strain of Candida montana but differed by 5.4 % nucleotide substitutions in the D1/D2 region of the LSU rRNA gene and by 10.3–10.5 % nucleotide substitutions in the ITS region. The name Barnettozyma siamensis f.a., sp. nov. is proposed. The type strain is DMKU-UbN24(1)T ( = BCC 61189T = NBRC 109701T = CBS 13392T).


2011 ◽  
Vol 61 (2) ◽  
pp. 462-468 ◽  
Author(s):  
Sukanya Nitiyon ◽  
Chanita Boonmak ◽  
Somjit Am-In ◽  
Sasitorn Jindamorakot ◽  
Hiroko Kawasaki ◽  
...  

Four strains of two novel xylose-utilizing yeast species were obtained from samples collected in Thailand from decaying corncobs (strains KU-Xs13T and KU-Xs18), a decaying grass (KU-Xs20) and estuarine water from a mangrove forest (WB15T). On the basis of morphological, biochemical, physiological and chemotaxonomic characteristics and sequence analysis of the D1/D2 domain of the large subunit rRNA gene, the four strains were found to represent two novel species of the genus Candida in the Candida albicans/Lodderomyces elongisporus clade. Three strains (KU-Xs13T, KU-Xs18 and KU-Xs20) were assigned as a single novel species, which was named Candida saraburiensis sp. nov. The type strain is KU-Xs13T (=CBS 11696T=NBRC 106721T=BCC 39601T). Strain WB15T represented another novel species of the genus Candida that was named Candida prachuapensis sp. nov. The type strain is WB15T (=CBS 11024T=NBRC 104881T=BCC 29904T).


2012 ◽  
Vol 62 (Pt_4) ◽  
pp. 1002-1006 ◽  
Author(s):  
Fabio V. Araújo ◽  
Carlos A. Rosa ◽  
Larissa F. D. Freitas ◽  
Marc-André Lachance ◽  
Ann Vaughan-Martini ◽  
...  

Cultures of a novel nutritionally specialized, fermentative yeast species were isolated from 34 water tanks of five bromeliad species, two mangrove sediment samples and one swamp water sample in Rio de Janeiro, Brazil. Sequence analysis of the D1/D2 domains of the large subunit of the rRNA gene showed that the novel species belongs to the genus Kazachstania. The novel species differs from Kazachstania martiniae by 11 substitutions and 2 gaps in the sequence of the domains D1/D2 of the LSU rRNA gene. The name Kazachstania bromeliacearum sp. nov. is proposed for the novel species. The type strain is IMUFRJ 51496T ( = CBS 7996T  = DBVPG 6864T  = UFMG BR-174T).


Sign in / Sign up

Export Citation Format

Share Document