scholarly journals Hyperediting of human T-cell leukemia virus type 2 and simian T-cell leukemia virus type 3 by the dsRNA adenosine deaminase ADAR-1

2012 ◽  
Vol 93 (12) ◽  
pp. 2646-2651 ◽  
Author(s):  
Nga Ling Ko ◽  
Emmanuel Birlouez ◽  
Simon Wain-Hobson ◽  
Renaud Mahieux ◽  
Jean-Pierre Vartanian

RNA editing mediated by adenosine deaminases acting on RNA (ADARs) converts adenosine (A) to inosine (I) residues in dsRNA templates. While ADAR-1-mediated editing was essentially described for RNA viruses, the present work addresses the issue for two δ-retroviruses, human T-cell leukemia virus type 2 and simian T-cell leukemia virus type 3 (HTLV-2 and STLV-3). We examined whether ADAR-1 could edit HTLV-2 and STLV-3 virus genomes in cell culture and in vivo. Using a highly sensitive PCR-based method, referred to as 3DI-PCR, we showed that ADAR-1 could hypermutate adenosine residues in HTLV-2. STLV-3 hypermutation was obtained without using 3DI-PCR, suggesting a higher mutation frequency for this virus. Detailed analysis of the dinucleotide editing context showed preferences for 5′ ArA and 5′ UrA. In conclusion, the present observations demonstrate that ADAR-1 massively edits HTLV-2 and STLV-3 retroviruses in vitro, but probably remains a rare phenomenon in vivo.

2021 ◽  
Vol 17 (1) ◽  
pp. e1009219
Author(s):  
Abdou Akkouche ◽  
Sara Moodad ◽  
Rita Hleihel ◽  
Hala Skayneh ◽  
Séverine Chambeyron ◽  
...  

Adult T cell leukemia (ATL) is an aggressive malignancy secondary to chronic infection by the human T-cell leukemia virus type 1 (HTLV-1) infection. Two viral proteins, Tax and HBZ, play central roles in ATL leukemogenesis. Tax expression transforms T cells in vitro and induces ATL-like disease in mice. Tax also induces a rough eye phenotype and increases hemocyte count in Drosophila melanogaster, indicative of transformation. Among multiple functions, Tax modulates the expression of the enhancer of zeste homolog 2 (EZH2), a methyltransferase of the Polycomb Repressive Complex 2 (PRC2), leading to H3K27me3-dependent reprogramming of around half of cellular genes. HBZ is a negative regulator of Tax-mediated viral transcription. HBZ effects on epigenetic signatures are underexplored. Here, we established an hbz transgenic fly model, and demonstrated that, unlike Tax, which induces NF-κB activation and enhanced PRC2 activity creating an activation loop, HBZ neither induces transformation nor NF-κB activation in vivo. However, overexpression of Tax or HBZ increases the PRC2 activity and both proteins directly interact with PRC2 complex core components. Importantly, overexpression of HBZ in tax transgenic flies prevents Tax-induced NF-κB or PRC2 activation and totally rescues Tax-induced transformation and senescence. Our results establish the in vivo antagonistic effect of HBZ on Tax-induced transformation and cellular effects. This study helps understanding long-term HTLV-1 persistence and cellular transformation and opens perspectives for new therapeutic strategies targeting the epigenetic machinery in ATL.


2017 ◽  
Vol 55 (9) ◽  
pp. 2838-2849 ◽  
Author(s):  
Madoka Kuramitsu ◽  
Tsuyoshi Sekizuka ◽  
Tadanori Yamochi ◽  
Sanaz Firouzi ◽  
Tomoo Sato ◽  
...  

ABSTRACTWestern blotting (WB) for human T cell leukemia virus type 1 (HTLV-1) is performed to confirm anti-HTLV-1 antibodies detected at the initial screening of blood donors and in pregnant women. However, the frequent occurrence of indeterminate results is a problem with this test. We therefore assessed the cause of indeterminate WB results by analyzing HTLV-1 provirus genomic sequences. A quantitative PCR assay measuring HTLV-1 provirus in WB-indeterminate samples revealed that the median proviral load was approximately 100-fold lower than that of WB-positive samples (0.01 versus 0.71 copy/100 cells). Phylogenic analysis of the complete HTLV-1 genomes of WB-indeterminate samples did not identify any specific phylogenetic groups. When we analyzed the nucleotide changes in 19 HTLV-1 isolates from WB-indeterminate samples, we identified 135 single nucleotide substitutions, composed of four types, G to A (29%), C to T (19%), T to C (19%), and A to G (16%). In the most frequent G-to-A substitution, 64% occurred at GG dinucleotides, indicating that APOBEC3G is responsible for mutagenesis in WB-indeterminate samples. Moreover, interestingly, five WB-indeterminate isolates had nonsense mutations in Pol and/or Tax, Env, p12, and p30. These findings suggest that WB-indeterminate carriers have low production of viral antigens because of a combination of a low proviral load and mutations in the provirus, which may interfere with host recognition of HTLV-1 antigens.


1998 ◽  
Vol 18 (6) ◽  
pp. 3620-3632 ◽  
Author(s):  
Christine Neuveut ◽  
Kenneth G. Low ◽  
Frank Maldarelli ◽  
Iris Schmitt ◽  
Franca Majone ◽  
...  

ABSTRACT Human T-cell leukemia virus type 1 is etiologically linked to the development of adult T-cell leukemia and various human neuropathies. The Tax protein of human T-cell leukemia virus type I has been implicated in cellular transformation. Like other oncoproteins, such as Myc, Jun, and Fos, Tax is a transcriptional activator. How it mechanistically dysregulates the cell cycle is unclear. Previously, it was suggested that Tax affects cell-phase transition by forming a direct protein-protein complex with p16INK4a, thereby inactivating an inhibitor of G1-to-S-phase progression. Here we show that, in T cells deleted for p16INK4a, Tax can compel an egress of cells from G0/G1 into S despite the absence of serum. We also show that in undifferentiated myocytes, expression of Tax represses cellular differentiation. In both settings, Tax expression was found to increase cyclin D-cdk activity and to enhance pRb phosphorylation. In T cells, a Tax-associated increase in steady-state E2F2 protein was also documented. In searching for a molecular explanation for these observations, we found that Tax forms a protein-protein complex with cyclin D3, whereas a point-mutated and transcriptionally inert Tax mutant failed to form such a complex. Interestingly, expression of wild-type Tax protein in cells was also correlated with the induction of a novel hyperphosphorylated cyclin D3 protein. Taken together, these findings suggest that Tax might directly influence cyclin D-cdk activity and function, perhaps by a route independent of cdk inhibitors such as p16INK4a.


2011 ◽  
Vol 85 (14) ◽  
pp. 6955-6962 ◽  
Author(s):  
S. Charoenthongtrakul ◽  
Q. Zhou ◽  
N. Shembade ◽  
N. S. Harhaj ◽  
E. W. Harhaj

2016 ◽  
Vol 90 (7) ◽  
pp. 3760-3772 ◽  
Author(s):  
Amanda R. Panfil ◽  
Nathan J. Dissinger ◽  
Cory M. Howard ◽  
Brandon M. Murphy ◽  
Kristina Landes ◽  
...  

ABSTRACTHuman T-cell leukemia virus type 1 (HTLV-1) and type 2 (HTLV-2) are highly related retroviruses that transform T cellsin vitrobut have distinct pathological outcomesin vivo. HTLV-1 encodes a protein from the antisense strand of its proviral genome, the HTLV-1 basic leucine zipper factor (HBZ), which inhibits Tax-1-mediated viral transcription and promotes cell proliferation, a high proviral load, and persistencein vivo. In adult T-cell leukemia/lymphoma (ATL) cell lines and patient T cells,hbzis often the only viral gene expressed. The antisense strand of the HTLV-2 proviral genome also encodes a protein termed APH-2. Like HBZ, APH-2 is able to inhibit Tax-2-mediated viral transcription and is detectable in most primary lymphocytes from HTLV-2-infected patients. However, unlike HBZ, the loss of APH-2in vivoresults in increased viral replication and proviral loads, suggesting that HBZ and APH-2 modulate the virus and cellular pathways differently. Herein, we examined the effect of APH-2 on several known HBZ-modulated pathways: NF-κB (p65) transactivation, transforming growth factor β (TGF-β) signaling, and interferon regulatory factor 1 (IRF-1) transactivation. Like HBZ, APH-2 has the ability to inhibit p65 transactivation. Conversely, HBZ and APH-2 have divergent effects on TGF-β signaling and IRF-1 transactivation. Quantitative PCR and protein half-life experiments revealed a substantial disparity between HBZ and APH-2 transcript levels and protein stability, respectively. Taken together, our data further elucidate the functional differences between HBZ and APH-2 and how these differences can have profound effects on the survival of infected cells and, ultimately, pathogenesis.IMPORTANCEHuman T-cell leukemia virus type 1 (HTLV-1) and type 2 (HTLV-2) are highly related retroviruses that have distinct pathological outcomes in infected hosts. Functional comparisons of HTLV-1 and HTLV-2 proteins provide a better understanding about how HTLV-1 infection is associated with disease and HTLV-2 infection is not. The HTLV genome antisense-strand geneshbzandaph-2are often the only viral genes expressed in HTLV-infected T cells. Previously, our group found that HTLV-1 HBZ and HTLV-2 APH-2 had distinct effectsin vivoand hypothesized that the differences in the interactions of HBZ and APH-2 with important cell signaling pathways dictate whether cells undergo proliferation, apoptosis, or senescence. Ultimately, these functional differences may affect how HTLV-1 causes disease but HTLV-2 generally does not. In the current study, we compared the effects of HBZ and APH-2 on several HTLV-relevant cellular pathways, including the TGF-β signaling, NF-κB activation, and IRF-1 transactivation pathways.


Sign in / Sign up

Export Citation Format

Share Document