antiviral signaling
Recently Published Documents


TOTAL DOCUMENTS

288
(FIVE YEARS 86)

H-INDEX

42
(FIVE YEARS 6)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Shuo Li ◽  
Nianchao Qian ◽  
Chao Jiang ◽  
Wenhong Zu ◽  
Anthony Liang ◽  
...  

AbstractZika virus (ZIKV) infection can be associated with neurological pathologies, such as microcephaly in newborns and Guillain-Barre syndrome in adults. Effective therapeutics are currently not available. As such, a comprehensive understanding of virus-host interactions may guide the development of medications for ZIKV. Here we report a human genome-wide overexpression screen to identify host factors that regulate ZIKV infection and find TMEM120A as a ZIKV restriction factor. TMEM120A overexpression significantly inhibits ZIKV replication, while TMEM120A knockdown increases ZIKV infection in cell lines. Moreover, Tmem120a knockout in mice facilitates ZIKV infection in primary mouse embryonic fibroblasts (MEF) cells. Mechanistically, the antiviral activity of TMEM120A is dependent on STING, as TMEM120A interacts with STING, promotes the translocation of STING from the endoplasmic reticulum (ER) to ER-Golgi intermediate compartment (ERGIC) and enhances the phosphorylation of downstream TBK1 and IRF3, resulting in the expression of multiple antiviral cytokines and interferon-stimulated genes. In summary, our gain-of-function screening identifies TMEM120A as a key activator of the antiviral signaling of STING.


Author(s):  
Tian-Sheng He ◽  
Jingping Huang ◽  
Tian Chen ◽  
Zhi Zhang ◽  
Kuntai Cai ◽  
...  

TANK-binding kinase 1 (TBK1)/IκB kinase-ε (IKKε) mediates robust production of type I interferons (IFN-I) and proinflammatory cytokines to restrict the spread of invading viruses. However, excessive or prolonged production of IFN-I is harmful to the host by causing autoimmune disorders.


2021 ◽  
Vol 17 (S2) ◽  
Author(s):  
Avital Licht Murava ◽  
Samantha Meadows ◽  
Fernando Palaguachi ◽  
Soomin C. Song ◽  
Yaron Bram ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Chen Wang ◽  
Ting Ling ◽  
Ni Zhong ◽  
Liang-Guo Xu

Mitochondrial antiviral signaling protein (MAVS), an adaptor protein, is activated by RIG-I, which is critical for an effective innate immune response to infection by various RNA viruses. Viral infection causes the RIG-I-like receptor (RLR) to recognize pathogen-derived dsRNA and then becomes activated to promote prion-like aggregation and activation of MAVS. Subsequently, through the recruitment of TRAF proteins, MAVS activates two signaling pathways mediated by TBK1-IRF3 and IKK- NF-κb, respectively, and turns on type I interferon and proinflammatory cytokines. This study discovered that NEDD4 binding protein 3 (N4BP3) is a positive regulator of the RLR signaling pathway by targeting MAVS. Overexpression of N4BP3 promoted virus-induced activation of the interferon-β (IFN-β) promoter and interferon-stimulated response element (ISRE). Further experiments showed that knockdown or knockout N4BP3 impaired RIG-I-like receptor (RLR)-mediated innate immune response, induction of downstream antiviral genes, and cellular antiviral responses. We also detected that N4BP3 could accelerate the interaction between MAVS and TRAF2. Related experiments revealed that N4BP3 could facilitate the ubiquitination modification of MAVS. These findings suggest that N4BP3 is a critical component of the RIG-I-like receptor (RLR)-mediated innate immune response by targeting MAVS, which also provided insight into the mechanisms of innate antiviral responses.


2021 ◽  
Vol 22 (22) ◽  
pp. 12097
Author(s):  
Rebecca Harris ◽  
Jianjun Yang ◽  
Kassandra Pagan ◽  
Soo Jung Cho ◽  
Heather Stout-Delgado

Influenza is a respiratory virus that alone or in combination with secondary bacterial pathogens can contribute to the development of acute pneumonia in persons >65 years of age. Host innate immune antiviral signaling early in response to influenza is essential to inhibit early viral replication and guide the initiation of adaptive immune responses. Using young adult (3 months) and aged adult mice infected with mouse adapted H1N1 or H3N2, the results of our study illustrate dysregulated and/or diminished activation of key signaling pathways in aged lung contribute to increased lung inflammation and morbidity. Specifically, within the first seven days of infection, there were significant changes in genes associated with TLR and RIG-I signaling detected in aged murine lung in response to H1N1 or H3N2. Taken together, the results of our study expand our current understanding of age-associated changes in antiviral signaling in the lung.


2021 ◽  
Vol 118 ◽  
pp. 160-168
Author(s):  
Chanyuan Wang ◽  
Jun Li ◽  
Xiao Yang ◽  
Qun Wang ◽  
Huijuan Zhong ◽  
...  

2021 ◽  
Author(s):  
David Yves Zander ◽  
Sandy S Burkart ◽  
Sandra Wuest ◽  
Vladimir Goncalves Magalhaes ◽  
Marco Binder

Properly responding to DNA damage is vital for eukaryotic cells, including the induction of DNA repair, growth arrest and, as a last resort to prevent neoplastic transformation, cell death. Besides being crucial for ensuring homeostasis, the same pathways and mechanisms are at the basis of chemoradiotherapy in cancer treatment, which involves therapeutic induction of DNA damage by chemical or physical (radiological) measures. Apart from typical DNA damage response mediators, the relevance of cell-intrinsic antiviral signaling pathways in response to DNA breaks has recently emerged. Originally known for combatting viruses via expression of antiviral factors including interferons (IFNs) and establishing of an antiviral state, retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) were found to be critical for adequate induction of cell death upon the introduction of DNA double-strand breaks. We here show that presence of IRF3 is crucial in this process, most likely through direct activation of pro-apoptotic factors rather than transcriptional induction of canonical downstream components, such as IFNs. Investigating genes reported to be involved in both DNA damage response and antiviral signaling, we demonstrate that IRF1 is an obligatory factor for DNA damage-induced cell death. Interestingly, its regulation does not require activation of RLR signaling, but rather sensing of DNA double strand breaks by ATM and ATR. Hence, even though independently regulated, both RLR signaling and IRF1 are essential for proper induction/execution of intrinsic apoptosis. Our results not only support more broadly developing IRF1 as a biomarker predictive for the effectiveness of chemoradiotherapy, but also suggest investigating a combined pharmacological stimulation of RLR and IRF1 signaling as a potential adjuvant regimen in tumor therapy.


2021 ◽  
Author(s):  
Renjie Chang ◽  
Weiwei Zheng ◽  
Yuena Sun ◽  
Shang Geng ◽  
Tianjun Xu

Long non-coding RNAs (lncRNAs) function as microregulatory factors that influence gene expression after a variety of pathogenic infection, which have been extensively studied in the past few years. Although less attention has been paid to lncRNAs in lower vertebrates than in mammals, current studies reveals that lncRNAs plays a vital role in fish stimulated by pathogens. Here, we discovered a new lncRNA, termed as MIR2187HG, which can function as a precursor of a small RNA miR-2187-3p with regulatory functions in miiuy croaker ( Miichthys miiuy ). Upon Siniperca chuatsi rhabdovirus (SCRV) virus infection, the expression levels of MIR2187HG were remarkably enhanced. Elevated MIR2187HG expression can act as a pivotally negative regulator that participates in the innate immune response of teleost fish to inhibit the intracellular TANK-binding kinase 1 (TBK1)-mediated antiviral signaling pathways, which can effectively avoid excessive immunity. In addition, we found that the SCRV virus could also utilize MIR2187HG to enhance its own number. Our results not only provide evidence regarding the involvement of the lncRNAs in response to anti-viruses in fish, but also broaden our understanding of the function of lncRNAs as precursor miRNA in teleost fish for the first time. Importance: SCRV infection upregulates MIR2187HG levels, which in turn suppresses SCRV-triggered type I interferon production, thus promoting viral replication in miiuy croaker. Notably, MIR2187HG regulates the release of miR-2187-3p, and TBK1 is a target of miR-2187-3p. MIR2187HG could obtain the function from miR-2187-3p to inhibit TBK1 expression and subsequently modulate TBK1-mediated NF-κB and IRF3 signaling. The collective results suggest that the novel regulation mechanism of TBK1-mediated antiviral response during RNA viral infection was regulated by MIR2187HG. Therefore, a new regulation mechanism for lncRNAs to regulate antiviral immune responses in fish is proposed.


2021 ◽  
Author(s):  
Silvia Groiss ◽  
Daniela Pabst ◽  
Cynthia Faber ◽  
Andreas Meier ◽  
Annette Bogdoll ◽  
...  

AbstractSingle-cell spatial transcriptomics technologies leveraged the potential to transcriptionally landscape sophisticated reactions in cells. Current methods to delineate such complex interplay lack the flexibility in rapid target adaptation and are particularly restricted in detecting rare transcripts. We developed a multiplex single-cell RNA In-situ hybridization technique, called ‘Molecular Cartography’ (MC) that can be easily tailored to specific applications and, by providing unprecedented sensitivity, specificity and resolution, is particularly suitable in tracing rare events at a subcellular level. Using a SARS-CoV-2 infection model, MC allows the discernment of single events in host-pathogen interactions, dissects primary from secondary responses, and illustrates differences in antiviral signaling pathways affected by SARS-CoV-2, simultaneously in various cell types.


2021 ◽  
Author(s):  
Andrew J McNamara ◽  
Austin D Brooks ◽  
Pranav Danthi

Viral antagonism of innate immune pathways is a common mechanism by which viruses evade immune surveillance. Infection of host cells with reovirus leads to the blockade of NF-κB, a key transcriptional regulator of the host's innate immune response. One mechanism by which reovirus infection results in inhibition of NF-κB is through a diminishment in levels of upstream activators, IKKβ and NEMO. Here, we demonstrate a second, distinct mechanism by which reovirus blocks NF-κB. We report that expression of a single viral protein, σ3, is sufficient to inhibit expression of NF-κB target genes. Further, σ3-mediated blockade of NF-κB occurs without changes to IKK levels or activity. Expression of only a subset of NF-κB target genes is reduced. Among NF-κB targets, the expression of type I interferon is significantly diminished by σ3 expression. Correspondingly, ectopic expression of σ3 enhances viral replication. Expression of NF-κB target genes varies following infection with closely related reovirus strains. Our genetic analysis identifies that these differences are controlled by polymorphisms in the amino acid sequence of σ3. This work identifies a new role for reovirus σ3 as a viral antagonist of the NF-κB-dependent antiviral pathways.


Sign in / Sign up

Export Citation Format

Share Document