cyclin d3
Recently Published Documents


TOTAL DOCUMENTS

441
(FIVE YEARS 34)

H-INDEX

60
(FIVE YEARS 3)

Haematologica ◽  
2021 ◽  
Author(s):  
Karen L. Bride ◽  
Hai Hu ◽  
Anastasia Tikhonova ◽  
Tori J. Fuller ◽  
Tiffaney L. Vincent ◽  
...  

Despite improvements in outcomes for children with B and T-cell acute lymphoblastic leukemia (B-ALL and T-ALL), patients with resistant or relapsed disease fare poorly. Previous studies have demonstrated the essential role of cyclin D3 in T-ALL disease initiation and progression and that targeting of the CDK4/6-cyclin D complex can suppress T-ALL proliferation, leading to efficient cell death in animal models. Studies in leukemia and other malignancies, suggest that schedule is important when combining CDK4/6 inhibitors (CDKis) with cytotoxic agents. Based on these observations, we broadened evaluation of two CDKis, palbociclib (PD-0332991, Pfizer) and ribociclib (LEE011, Novartis) in B and T-ALL as single agent and in combination with conventional cytotoxic chemotherapy, using different schedules in preclinical models. As monotherapy, CDKis caused cell cycle arrest with a significant decrease in S phase entry and were active in vivo across a broad number of patient-derived xenograft samples. Prolonged monotherapy induces resistance, for which we identified a potential novel mechanism using transcriptome profiling. Importantly, simultaneous but not sequential treatment of CDKis with conventional chemotherapy (dexamethasone, L-asparaginase and vincristine) led to improved efficacy compared to monotherapy in vivo. We provide novel evidence that combining CDKis and conventional chemotherapy can be safe and effective. These results led to the rational design of a clinical trial.


2021 ◽  
Vol 28 (6) ◽  
pp. 5148-5154
Author(s):  
Elif Yilmaz ◽  
Arashpreet Chhina ◽  
Victor E. Nava ◽  
Anita Aggarwal

Splenic diffuse red pulp small B-cell lymphoma (SDRPL) is a rare disease, representing <1% of all non-Hodgkin lymphomas (NHL). The most common clinical manifestations include splenomegaly, lymphocytosis, and hemocytopenia. A diagnosis of SDRPL can be challenging, as it shares multiple clinical and laboratory features with splenic marginal zone lymphoma (SMZL), hairy cell leukemia (HCL), and HCL variant (HCL-v). Obtaining splenic tissue remains the gold standard for diagnosis. In the cases where splenic tissue is not available, diagnosis can be established by a review of peripheral blood and bone marrow studies. SDRPL is characterized by a diffuse involvement of the splenic red pulp by monomorphous small-to-medium sized mature B lymphocytes effacing the white pulp. The characteristic immunophenotype is positive for CD20, DBA.44 (20 to 90%), and IgG, and typically negative for CD5, CD10, CD23, cyclin D1, CD43, annexin A1, CD11c, CD25, CD123, and CD138. The Ki-67 proliferative index is characteristically low. Cyclin D3 is expressed in the majority of SDRPL in contrast with other types of small B-cell lymphomas, thus facilitating the recognition of this disease. There is no standard treatment regimen for SDRPL. Initial treatment options include splenectomy, rituximab monotherapy, or a combination of both. Chemoimmunotherapy should be considered in patients with advanced disease at baseline or progression.


2021 ◽  
Vol 32 (21) ◽  
Author(s):  
Pooja Sharma ◽  
Sarah Tiufekchiev ◽  
Victoria Lising ◽  
Seung Woo Chung ◽  
Jung Soo Suk ◽  
...  

Keratin 19 (K19) inhibits glycogen synthase kinase-3β (GSK3β) accumulation in the nucleus, preventing cyclin D3 degradation. K19 physically interacts with GSK3β, and this interaction requires Ser 10 and 35 of K19. Mutating either residues decreased cyclin D3 levels and cell proliferation. The K19–GSK3β–cyclin D3 pathway also regulates the sensitivity of cancer cells to CDK4/6 inhibitors.


2021 ◽  
Vol 22 (19) ◽  
pp. 10619
Author(s):  
Ah-Reum Cho ◽  
Woon-Yi Park ◽  
Hyo-Jung Lee ◽  
Deok-Yong Sim ◽  
Eunji Im ◽  
...  

Though Morusin isolated from the root of Morus alba was known to have antioxidant, anti-inflammatory, antiangiogenic, antimigratory, and apoptotic effects, the underlying antitumor effect of Morusin is not fully understood on the glycolysis of liver cancers. Hence, in the current study, the antitumor mechanism of Morusin was explored in Hep3B and Huh7 hepatocellular carcninomas (HCC) in association with glycolysis and G1 arrest. Herein, Morusin significantly reduced the viability and the number of colonies in Hep3B and Huh7 cells. Moreover, Morusin significantly increased G1 arrest, attenuated the expression of cyclin D1, cyclin D3, cyclin E, cyclin-dependent kinase 2 (CDK2), cyclin-dependent kinase 4 (CDK4), and cyclin-dependent kinase 6 (CDK6) and upregulated p21 and p27 in Hep3B and Huh7 cells. Interestingly, Morusin significantly activated phosphorylation of the adenosine 5′-monophosphate (AMP)-activated protein kinase (AMPK)/acetyl-CoA carboxylase (ACC) but attenuated the expression of the p-mammalian target of protein kinase B (AKT), rapamycin (mTOR), c-Myc, hexokinase 2(HK2), pyruvate kinases type M2 (PKM2), and lactate dehydrogenase (LDH) in Hep3B and Huh7 cells. Consistently, Morusin suppressed lactate, glucose, and adenosine triphosphate (ATP) in Hep3B and Huh7 cells. Conversely, the AMPK inhibitor compound C reduced the ability of Morusin to activate AMPK and attenuate the expression of p-mTOR, HK2, PKM2, and LDH-A and suppressed G1 arrest induced by Morusin in Hep3B cells. Overall, these findings suggest that Morusin exerts an antitumor effect in HCCs via AMPK mediated G1 arrest and antiglycolysis as a potent dietary anticancer candidate.


2021 ◽  
Author(s):  
Pooja Sharma ◽  
Sarah Tiufekchiev ◽  
Victoria Lising ◽  
Seung Woo Chung ◽  
Jung Soo Suk ◽  
...  

Cyclin D3 regulates the G1/S transition and is frequently overexpressed in several cancer types including breast cancer, where it promotes tumor progression. Here, we show that a cytoskeletal protein keratin 19 (K19) physically interacts with a serine/threonine kinase GSK3β and prevents GSK3β-dependent degradation of cyclin D3. The absence of K19 allowed active GSK3β to accumulate in the nucleus and degrade cyclin D3. Specifically, the head domain of K19 was required to sustain inhibitory phosphorylation of GSK3β Ser9, prevent nuclear accumulation of GSK3β, and maintain cyclin D3 levels and cell proliferation. K19 was found to interact with GSK3β and K19-GSK3β interaction was mapped out to require Ser10 and Ser35 residues on the head domain of K19. Unlike wildtype K19, S10A and S35A mutants failed to maintain total and nuclear cyclin D3 levels and induce cell proliferation. Finally, we show that the K19-GSK3β-cyclin D3 pathway affected sensitivity of cells towards inhibitors to cyclin dependent kinase 4 and 6 (CDK4/6). Overall, these findings establish a role for K19 in the regulation of GSK3β-cyclin D3 pathway and demonstrate a potential strategy for overcoming resistance to CDK4/6 inhibitors.


2021 ◽  
Vol 49 (7) ◽  
pp. 030006052110328
Author(s):  
Jin woo Choi ◽  
Jin-deok Joo ◽  
Jang hyeok In ◽  
Daewoo Kim ◽  
Yongshin Kim ◽  
...  

Objective To investigate the ability of kobusone to reduce high glucose levels and promote β-cell proliferation. Methods Four-week-old female db/db mice were assigned to the kobusone (25 mg/kg body weight, intraperitoneally twice a day) or control group (same volume of PBS). Glucose levels and body weight were measured twice a week. After 6 weeks, intraperitoneal glucose tolerance tests and immunohistochemical studies were performed, and insulin levels were determined. The expression of mRNAs involved in cell proliferation, such as PI3K, Akt, cyclin D3 and p57Kip 2 , was measured by quantitative reverse transcription polymerase chain reaction (RT-qPCR). Results Kobusone reduced blood glucose levels after 3 weeks and more strongly increased serum insulin levels than the vehicle. Immunohistochemistry illustrated that kobusone increased 5-bromo-2′-deoxyuridine incorporation into islet β-cells, suggesting that it can stimulate islet β-cell replication in vivo. RT-qPCR indicated that kobusone upregulated the mRNA expression of PI3K, Akt, and cyclin D3 and downregulated that of p57Kip2. Conclusion Our findings suggest that kobusone is a potent pancreatic islet β-cell inducer that has the potential to be developed as an anti-diabetic agent.


Author(s):  
Catherine C. Smith ◽  
Aaron D. Viny ◽  
Evan Massi ◽  
Cyriac Kandoth ◽  
Nicholas D. Socci ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Ester Sala ◽  
Celia Vived ◽  
Júlia Luna ◽  
Noemí Alejandra Saavedra-Ávila ◽  
Upasana Sengupta ◽  
...  

BackgroundPancreatic islets are exposed to strong pro-apoptotic stimuli: inflammation and hyperglycemia, during the progression of the autoimmune diabetes (T1D). We found that the Cdk11(Cyclin Dependent Kinase 11) is downregulated by inflammation in the T1D prone NOD (non-obese diabetic) mouse model. The aim of this study is to determine the role of CDK11 in the pathogenesis of T1D and to assess the hierarchical relationship between CDK11 and Cyclin D3 in beta cell viability, since Cyclin D3, a natural ligand for CDK11, promotes beta cell viability and fitness in front of glucose.MethodsWe studied T1D pathogenesis in NOD mice hemideficient for CDK11 (N-HTZ), and, in N-HTZ deficient for Cyclin D3 (K11HTZ-D3KO), in comparison to their respective controls (N-WT and K11WT-D3KO). Moreover, we exposed pancreatic islets to either pro-inflammatory cytokines in the presence of increasing glucose concentrations, or Thapsigargin, an Endoplasmic Reticulum (ER)-stress inducing agent, and assessed apoptotic events. The expression of key ER-stress markers (Chop, Atf4 and Bip) was also determined.ResultsN-HTZ mice were significantly protected against T1D, and NS-HTZ pancreatic islets exhibited an impaired sensitivity to cytokine-induced apoptosis, regardless of glucose concentration. However, thapsigargin-induced apoptosis was not altered. Furthermore, CDK11 hemideficiency did not attenuate the exacerbation of T1D caused by Cyclin D3 deficiency.ConclusionsThis study is the first to report that CDK11 is repressed in T1D as a protection mechanism against inflammation-induced apoptosis and suggests that CDK11 lies upstream Cyclin D3 signaling. We unveil the CDK11/Cyclin D3 tandem as a new potential intervention target in T1D.


2020 ◽  
Vol 218 (4) ◽  
Author(s):  
Juhee Pae ◽  
Jonatan Ersching ◽  
Tiago B.R. Castro ◽  
Marta Schips ◽  
Luka Mesin ◽  
...  

During affinity maturation, germinal center (GC) B cells alternate between proliferation and somatic hypermutation in the dark zone (DZ) and affinity-dependent selection in the light zone (LZ). This anatomical segregation imposes that the vigorous proliferation that allows clonal expansion of positively selected GC B cells takes place ostensibly in the absence of the signals that triggered selection in the LZ, as if by “inertia.” We find that such inertial cycles specifically require the cell cycle regulator cyclin D3. Cyclin D3 dose-dependently controls the extent to which B cells proliferate in the DZ and is essential for effective clonal expansion of GC B cells in response to strong T follicular helper (Tfh) cell help. Introduction into the Ccnd3 gene of a Burkitt lymphoma–associated gain-of-function mutation (T283A) leads to larger GCs with increased DZ proliferation and, in older mice, clonal B cell lymphoproliferation, suggesting that the DZ inertial cell cycle program can be coopted by B cells undergoing malignant transformation.


2020 ◽  
Vol 21 (24) ◽  
pp. 9557
Author(s):  
Maddalena Parafati ◽  
Sang Hyo Bae ◽  
R. Jason Kirby ◽  
Martina Fitzek ◽  
Preeti Iyer ◽  
...  

Non-alcoholic fatty liver disease (NAFLD) has a large impact on global health. At the onset of disease, NAFLD is characterized by hepatic steatosis defined by the accumulation of triglycerides stored as lipid droplets. Developing therapeutics against NAFLD and progression to non-alcoholic steatohepatitis (NASH) remains a high priority in the medical and scientific community. Drug discovery programs to identify potential therapeutic compounds have supported high throughput/high-content screening of in vitro human-relevant models of NAFLD to accelerate development of efficacious anti-steatotic medicines. Human induced pluripotent stem cell (hiPSC) technology is a powerful platform for disease modeling and therapeutic assessment for cell-based therapy and personalized medicine. In this study, we applied AstraZeneca’s chemogenomic library, hiPSC technology and multiplexed high content screening to identify compounds that significantly reduced intracellular neutral lipid content. Among 13,000 compounds screened, we identified hits that protect against hiPSC-derived hepatic endoplasmic reticulum stress-induced steatosis by a mechanism of action including inhibition of the cyclin D3-cyclin-dependent kinase 2-4 (CDK2-4)/CCAAT-enhancer-binding proteins (C/EBPα)/diacylglycerol acyltransferase 2 (DGAT2) pathway, followed by alteration of the expression of downstream genes related to NAFLD. These findings demonstrate that our phenotypic platform provides a reliable approach in drug discovery, to identify novel drugs for treatment of fatty liver disease as well as to elucidate their underlying mechanisms.


Sign in / Sign up

Export Citation Format

Share Document