scholarly journals An Empirical Biomarker-based Calculator for Autosomal Recessive Polycystic Kidney Disease The Nieto-Narayan Formula

2016 ◽  
Author(s):  
Jake A Nieto ◽  
Michael A Yamin ◽  
Itzhak D. Goldberg ◽  
Prakash Narayan

Autosomal polycystic kidney disease (ARPKD) is associated with progressive enlargement of the kidneys fuelled by the formation and expansion of fluid-filled cysts. The disease is congenital and children that do not succumb to it during the neonatal period will, by age 10 years, more often than not, require nephrectomy+renal replacement therapy for management of both pain and renal insufficiency. Since increasing cystic index (CI; percent of kidney occupied by cysts) drives both renal expansion and organ dysfunction, management of these patients, including decisions such as elective nephrectomy and prioritization on the transplant waitlist, could clearly benefit from serial determination of CI. So also, clinical trials in ARPKD evaluating efficacy of novel drug candidates could benefit from serial determination of CI. Although ultrasound is currently the imaging modality of choice for diagnosis of ARPKD, its utilization for assessing disease progression is highly limited. Magnetic resonance imaging or computed tomography, although more reliable for determination of CI, are expensive, time-consuming and somewhat impractical in the pediatric population. Using a well-established mammalian model of ARPKD, we undertook a big data-like analysis of minimally- or non-invasive serum and urine biomarkers of renal injury/dysfunction to derive a family of equations for estimating CI. We then applied a signal averaging protocol to distil these equations to a single empirical formula for calculation of CI. Such a formula will eventually find use in identifying and monitoring patients at high risk for progressing to end-stage renal disease and aid in the conduct of clinical trials.

Author(s):  
Taylor Richards ◽  
Kavindiya Modarage ◽  
Soniya A. Malik ◽  
Paraskevi Goggolidou

Polycystic Kidney Disease (PKD) refers to a group of disorders, driven by the formation of cysts in renal tubular cells and is currently one of the leading causes of end-stage renal disease. The range of symptoms observed in PKD is due to mutations in cilia-localising genes, resulting in changes in cellular signalling. As such, compounds that are currently in preclinical and clinical trials target some of these signalling pathways that are dysregulated in PKD. In this review, we highlight these pathways including cAMP, EGF and AMPK signalling and drugs that target them and may show promise in lessening the disease burden of PKD patients. At present, tolvaptan is the only approved therapy for ADPKD, however, it carries several adverse side effects whilst comparatively, no pharmacological drug is approved for ARPKD treatment. Aside from this, drugs that have been the subject of multiple clinical trials such as metformin, which targets AMPK signalling and somatostatins, which target cAMP signalling have shown great promise in reducing cyst formation and cellular proliferation. This review also discusses other potential and novel targets that can be used for future interventions, such as β-catenin and TAZ, where research has shown that a reduction in the overexpression of these signalling components results in amelioration of disease phenotype. Thus, it becomes apparent that well-designed preclinical investigations and future clinical trials into these pathways and other potential signalling targets are crucial in bettering disease prognosis for PKD patients and could lead to personalised therapy approaches.


2021 ◽  
Vol 22 (12) ◽  
pp. 6523
Author(s):  
Adrian Cordido ◽  
Marta Vizoso-Gonzalez ◽  
Miguel A. Garcia-Gonzalez

Autosomal recessive polycystic kidney disease (ARPKD) is a rare disorder and one of the most severe forms of polycystic kidney disease, leading to end-stage renal disease (ESRD) in childhood. PKHD1 is the gene that is responsible for the vast majority of ARPKD. However, some cases have been related to a new gene that was recently identified (DZIP1L gene), as well as several ciliary genes that can mimic a ARPKD-like phenotypic spectrum. In addition, a number of molecular pathways involved in the ARPKD pathogenesis and progression were elucidated using cellular and animal models. However, the function of the ARPKD proteins and the molecular mechanism of the disease currently remain incompletely understood. Here, we review the clinics, treatment, genetics, and molecular basis of ARPKD, highlighting the most recent findings in the field.


Urologiia ◽  
2021 ◽  
Vol 3_2021 ◽  
pp. 50-55
Author(s):  
A.E. Lubennikov Lubennikov ◽  
A.A. Shishimorov Shishimorov ◽  
R.N. Trushkin Trushkin ◽  
T.K. Isaev T ◽  
O.N. Kotenko Kotenko ◽  
...  

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Edmund C. Lee ◽  
Tania Valencia ◽  
Charles Allerson ◽  
Annelie Schairer ◽  
Andrea Flaten ◽  
...  

Abstract Autosomal dominant polycystic kidney disease (ADPKD), caused by mutations in either PKD1 or PKD2 genes, is one of the most common human monogenetic disorders and the leading genetic cause of end-stage renal disease. Unfortunately, treatment options for ADPKD are limited. Here we report the discovery and characterization of RGLS4326, a first-in-class, short oligonucleotide inhibitor of microRNA-17 (miR-17), as a potential treatment for ADPKD. RGLS4326 is discovered by screening a chemically diverse and rationally designed library of anti-miR-17 oligonucleotides for optimal pharmaceutical properties. RGLS4326 preferentially distributes to kidney and collecting duct-derived cysts, displaces miR-17 from translationally active polysomes, and de-represses multiple miR-17 mRNA targets including Pkd1 and Pkd2. Importantly, RGLS4326 demonstrates a favorable preclinical safety profile and attenuates cyst growth in human in vitro ADPKD models and multiple PKD mouse models after subcutaneous administration. The preclinical characteristics of RGLS4326 support its clinical development as a disease-modifying treatment for ADPKD.


2020 ◽  
Vol 21 (12) ◽  
pp. 4537
Author(s):  
Svenja Koslowski ◽  
Camille Latapy ◽  
Pierrïck Auvray ◽  
Marc Blondel ◽  
Laurent Meijer

Autosomal dominant polycystic kidney disease (ADPKD) is the most common inheritable cause of end stage renal disease and, as of today, only a single moderately effective treatment is available for patients. Even though ADPKD research has made huge progress over the last decades, the precise disease mechanisms remain elusive. However, a wide variety of cellular and animal models have been developed to decipher the pathophysiological mechanisms and related pathways underlying the disease. As none of these models perfectly recapitulates the complexity of the human disease, the aim of this review is to give an overview of the main tools currently available to ADPKD researchers, as well as their main advantages and limitations.


Sign in / Sign up

Export Citation Format

Share Document