scholarly journals Neuronal components of evaluating the human origin of abstract shapes

2016 ◽  
Author(s):  
Hagar Goldberg ◽  
Yuval Hart ◽  
Avraham E Mayo ◽  
Uri Alon ◽  
Rafael Malach

AbstractCommunication through visual symbols is a key aspect of human culture. However, to what extent can people distinguish between human-origin and artificial symbols, and the neuronal mechanisms underlying this process are not clear. Using fMRI we contrasted brain activity during presentation of human-created abstract shapes and random-algorithm created shapes, both sharing similar low level features.We found that participants correctly identified most shapes as human or random. The lateral occipital complex (LOC) was the main brain region showing preference to human-made shapes, independently of task. Furthermore, LOC activity was parametrically correlated to beauty and familiarity scores of the shapes (rated following the scan). Finally, a model classifier based only on LOC activity showed human level accuracy at discriminating between human-made and randomly-made shapes.Our results highlight the sensitivity of the human brain to social and cultural cues, and point to high-order object areas as central nodes underlying this capacity.

NeuroImage ◽  
1999 ◽  
Vol 9 (1) ◽  
pp. 46-62 ◽  
Author(s):  
C. Schiltz ◽  
J.M. Bodart ◽  
S. Dubois ◽  
S. Dejardin ◽  
C. Michel ◽  
...  

2019 ◽  
Vol 9 (22) ◽  
pp. 4749
Author(s):  
Lingyun Jiang ◽  
Kai Qiao ◽  
Linyuan Wang ◽  
Chi Zhang ◽  
Jian Chen ◽  
...  

Decoding human brain activities, especially reconstructing human visual stimuli via functional magnetic resonance imaging (fMRI), has gained increasing attention in recent years. However, the high dimensionality and small quantity of fMRI data impose restrictions on satisfactory reconstruction, especially for the reconstruction method with deep learning requiring huge amounts of labelled samples. When compared with the deep learning method, humans can recognize a new image because our human visual system is naturally capable of extracting features from any object and comparing them. Inspired by this visual mechanism, we introduced the mechanism of comparison into deep learning method to realize better visual reconstruction by making full use of each sample and the relationship of the sample pair by learning to compare. In this way, we proposed a Siamese reconstruction network (SRN) method. By using the SRN, we improved upon the satisfying results on two fMRI recording datasets, providing 72.5% accuracy on the digit dataset and 44.6% accuracy on the character dataset. Essentially, this manner can increase the training data about from n samples to 2n sample pairs, which takes full advantage of the limited quantity of training samples. The SRN learns to converge sample pairs of the same class or disperse sample pairs of different class in feature space.


Science ◽  
2020 ◽  
Vol 367 (6482) ◽  
pp. 1086.8-1087
Author(s):  
Peter Stern
Keyword(s):  

1988 ◽  
Vol 35 (11) ◽  
pp. 960-966 ◽  
Author(s):  
J.C. de Munck ◽  
B.W. van Dijk ◽  
H. Spekreijse
Keyword(s):  

2006 ◽  
Vol 96 (25) ◽  
Author(s):  
Itai Doron ◽  
Eyal Hulata ◽  
Itay Baruchi ◽  
Vernon L. Towle ◽  
Eshel Ben-Jacob

NeuroImage ◽  
2000 ◽  
Vol 11 (5) ◽  
pp. 359-369 ◽  
Author(s):  
Armin Fuchs ◽  
Viktor K. Jirsa ◽  
J.A.Scott Kelso

Sign in / Sign up

Export Citation Format

Share Document