cognitive tasks
Recently Published Documents


TOTAL DOCUMENTS

1320
(FIVE YEARS 442)

H-INDEX

67
(FIVE YEARS 7)

2022 ◽  
pp. 108705472110664
Author(s):  
Lucy Riglin ◽  
Robyn E. Wootton ◽  
Lucy A. Livingston ◽  
Jessica Agnew-Blais ◽  
Louise Arseneault ◽  
...  

Objective: We investigated whether “late-onset” ADHD that emerges in adolescence/adulthood is similar in risk factor profile to: (1) child-onset ADHD, but emerges later because of scaffolding/compensation from childhood resources; and (2) depression, because it typically onsets in adolescence/adulthood and shows symptom and genetic overlaps with ADHD. Methods: We examined associations between late-onset ADHD and ADHD risk factors, cognitive tasks, childhood resources and depression risk factors in a population-based cohort followed-up to age 25 years ( N=4224–9764). Results: Parent-rated late-onset ADHD was like child-onset persistent ADHD in associations with ADHD polygenic risk scores and cognitive task performance, although self-rated late-onset ADHD was not. Late-onset ADHD was associated with higher levels of childhood resources than child-onset ADHD and did not show strong evidence of association with depression risk factors. Conclusions: Late-onset ADHD shares characteristics with child-onset ADHD when parent-rated, but differences for self-reports require investigation. Childhood resources may delay the onset of ADHD.


2022 ◽  
Vol 12 ◽  
Author(s):  
Gaoding Jia ◽  
Guangfang Liu ◽  
Haijing Niu

It is well-established that visuospatial attention is mainly lateralized to the right hemisphere, whereas language production is mainly left-lateralized. However, there is a significant controversy regarding how these two kinds of lateralization interact with each other. The present research used functional near-infrared spectroscopy (fNIRS) to examine whether visuospatial attention is indeed right-lateralized, whereas language production is left-lateralized, and more importantly, whether the extent of lateralization in the visuospatial task is correlated with that in the task involving language. Specifically, fifty-two healthy right-handed participants participated in this study. Multiple-channel fNIRS technique was utilized to record the cerebral hemodynamic changes when participants were engaged in naming objects depicted in pictures (the picture naming task) or judging whether a presented line was bisected correctly (the landmark task). The degree of hemispheric lateralization was quantified according to the activation difference between the left and right hemispheres. We found that the picture-naming task predominantly activated the inferior frontal gyrus (IFG) of the left hemisphere. In contrast, the landmark task predominantly activated the inferior parietal sulcus (IPS) and superior parietal lobule (SPL) of the right hemisphere. The quantitative calculation of the laterality index also showed a left-lateralized distribution for the picture-naming task and a right-lateralized distribution for the landmark task. Intriguingly, the correlation analysis revealed no significant correlation between the laterality indices of these two tasks. Our findings support the independent hypothesis, suggesting that different cognitive tasks may engender lateralized processing in the brain, but these lateralized activities may be independent of each other. Meanwhile, we stress the importance of handedness in understanding the relationship between functional asymmetries. Methodologically, we demonstrated the effectiveness of using the multichannel fNIRS technique to investigate the hemispheric specialization of different cognitive tasks and their lateralization relations between different tasks. Our findings and methods may have important implications for future research to explore lateralization-related issues in individuals with neural pathologies.


2022 ◽  
Vol 13 ◽  
Author(s):  
Nathan Ward ◽  
Alekya Menta ◽  
Virginia Ulichney ◽  
Cristiana Raileanu ◽  
Thomas Wooten ◽  
...  

Standing upright on stable and unstable surfaces requires postural control. Postural control declines as humans age, presenting greater risk of fall-related injury and other negative health outcomes. Secondary cognitive tasks can further impact balance, which highlights the importance of coordination between cognitive and motor processes. Past research indicates that this coordination relies on executive function (EF; the ability to control, maintain, and flexibly direct attention to achieve goals), which coincidentally declines as humans age. This suggests that secondary cognitive tasks requiring EF may exert a greater influence on balance compared to non-EF secondary tasks, and this interaction could be exaggerated among older adults. In the current study, we had younger and older adults complete two Surface Stability conditions (standing upright on stable vs. unstable surfaces) under varying Cognitive Load; participants completed EF (Shifting, Inhibiting, Updating) and non-EF (Processing Speed) secondary cognitive tasks on tablets, as well as a single task control scenario with no secondary cognitive task. Our primary balance measure of interest was sway area, which was measured with an array of wearable inertial measurement unit sensors. Replicating prior work, we found a main effect of Surface Stability with less sway on stable surfaces compared to unstable surfaces, and we found an interaction between Age and Surface Stability with older adults exhibiting significantly greater sway selectively on unstable surfaces compared to younger adults. New findings revealed a main effect of Cognitive Load on sway, with the single task condition having significantly less sway than two of the EF conditions (Updating and Shifting) and the non-EF condition (Processing Speed). We also found an interaction of Cognitive Load and Surface Stability on postural control, where Surface Stability impacted sway the most for the single task and two of the executive function conditions (Inhibition and Shifting). Interestingly, Age did not interact with Cognitive Load, suggesting that both age groups were equally impacted by secondary cognitive tasks, regardless the presence or type of secondary cognitive task. Taken together, these patterns suggest that cognitive demands vary in their impact on posture control across stable vs. unstable surfaces, and that EF involvement may not be the driving mechanism explaining cognitive-motor dual-task interference on balance.


Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 214
Author(s):  
Kyuahn Kwon ◽  
Jaeyong Chung

Large-scale neural networks have attracted much attention for surprising results in various cognitive tasks such as object detection and image classification. However, the large number of weight parameters in the complex networks can be problematic when the models are deployed to embedded systems. In addition, the problems are exacerbated in emerging neuromorphic computers, where each weight parameter is stored within a synapse, the primary computational resource of the bio-inspired computers. We describe an effective way of reducing the parameters by a recursive tensor factorization method. Applying the singular value decomposition in a recursive manner decomposes a tensor that represents the weight parameters. Then, the tensor is approximated by algorithms minimizing the approximation error and the number of parameters. This process factorizes a given network, yielding a deeper, less dense, and weight-shared network with good initial weights, which can be fine-tuned by gradient descent.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Hua Tang ◽  
Mitchell R. Riley ◽  
Balbir Singh ◽  
Xue-Lian Qi ◽  
David T. Blake ◽  
...  

AbstractTraining in working memory tasks is associated with lasting changes in prefrontal cortical activity. To assess the neural activity changes induced by training, we recorded single units, multi-unit activity (MUA) and local field potentials (LFP) with chronic electrode arrays implanted in the prefrontal cortex of two monkeys, throughout the period they were trained to perform cognitive tasks. Mastering different task phases was associated with distinct changes in neural activity, which included recruitment of larger numbers of neurons, increases or decreases of their firing rate, changes in the correlation structure between neurons, and redistribution of power across LFP frequency bands. In every training phase, changes induced by the actively learned task were also observed in a control task, which remained the same across the training period. Our results reveal how learning to perform cognitive tasks induces plasticity of prefrontal cortical activity, and how activity changes may generalize between tasks.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0261947
Author(s):  
Sharon Hassin-Baer ◽  
Oren S. Cohen ◽  
Simon Israeli-Korn ◽  
Gilad Yahalom ◽  
Sandra Benizri ◽  
...  

Objective The purpose of this study is to explore the possibility of developing a biomarker that can discriminate early-stage Parkinson’s disease from healthy brain function using electroencephalography (EEG) event-related potentials (ERPs) in combination with Brain Network Analytics (BNA) technology and machine learning (ML) algorithms. Background Currently, diagnosis of PD depends mainly on motor signs and symptoms. However, there is need for biomarkers that detect PD at an earlier stage to allow intervention and monitoring of potential disease-modifying therapies. Cognitive impairment may appear before motor symptoms, and it tends to worsen with disease progression. While ERPs obtained during cognitive tasks performance represent processing stages of cognitive brain functions, they have not yet been established as sensitive or specific markers for early-stage PD. Methods Nineteen PD patients (disease duration of ≤2 years) and 30 healthy controls (HC) underwent EEG recording while performing visual Go/No-Go and auditory Oddball cognitive tasks. ERPs were analyzed by the BNA technology, and a ML algorithm identified a combination of features that distinguish early PD from HC. We used a logistic regression classifier with a 10-fold cross-validation. Results The ML algorithm identified a neuromarker comprising 15 BNA features that discriminated early PD patients from HC. The area-under-the-curve of the receiver-operating characteristic curve was 0.79. Sensitivity and specificity were 0.74 and 0.73, respectively. The five most important features could be classified into three cognitive functions: early sensory processing (P50 amplitude, N100 latency), filtering of information (P200 amplitude and topographic similarity), and response-locked activity (P-200 topographic similarity preceding the motor response in the visual Go/No-Go task). Conclusions This pilot study found that BNA can identify patients with early PD using an advanced analysis of ERPs. These results need to be validated in a larger PD patient sample and assessed for people with premotor phase of PD.


Author(s):  
Sarah Susanne Lütke Lanfer ◽  
Sören Enge ◽  
Marlen Melzer ◽  
Jürgen Wegge ◽  
Matthias Kliegel

AbstractThe current study aimed at investigating feasibility of a self-administered task-switching training in a middle-aged working population. Eighty-one caregivers (41–62 years old) were instructed to train at home 8 times either within a 7- or 14-day interval. Only 56.7% performed more than 50% of the instructed number of training sessions. However, compliant caregivers (who completed more than 4 training sessions) showed significant training gains and transfer to an untrained task-switching task. Although transfer effects to other cognitive tasks were not found, trained participants tended to report fewer everyday memory failures than a control group. In conclusion, the implementation of a home-based task-switching training in everyday life of caregivers is possible. However, there is only limited evidence for generalization of results of previous laboratory studies. Adherence and transfer to other cognitive tasks are discussed as important challenges in conveying laboratory findings into real life.


2022 ◽  
Author(s):  
Delphine Caruelle ◽  
Poja Shams ◽  
Anders Gustafsson ◽  
Line Lervik-Olsen

AbstractAfter years of using AI to perform cognitive tasks, marketing practitioners can now use it to perform tasks that require emotional intelligence. This advancement is made possible by the rise of affective computing, which develops AI and machines capable of detecting and responding to human emotions. From market research, to customer service, to product innovation, the practice of marketing will likely be transformed by the rise of affective computing, as preliminary evidence from the field suggests. In this Idea Corner, we discuss this transformation and identify the research opportunities that it offers.


Sign in / Sign up

Export Citation Format

Share Document