scholarly journals Semaphorin-Plexin signaling influences early ventral telencephalic development and thalamocortical axon guidance

2017 ◽  
Author(s):  
Manuela D. Mitsogiannis ◽  
Graham E. Little ◽  
Kevin J. Mitchell

AbstractBackgroundSensory processing relies on projections from the thalamus to the neocortex being established during development. Information from different sensory modalities reaching the thalamus is segregated into specialized nuclei, whose neurons then send inputs to cognate cortical areas through topographically defined axonal connections.Developing thalamocortical axons (TCAs) normally approach the cortex by extending through the subpallium; here, axonal navigation is aided by distributed guidance cues and discrete cell populations, such as the corridor neurons and the internal capsule (IC) guidepost cells. In mice lacking Semaphorin-6A, axons from the dorsal lateral geniculate nucleus (dLGN) bypass the IC and extend aberrantly in the ventral subpallium. The functions normally mediated by Semaphorin-6A in this system remain unknown, but might depend on interactions with Plexin-A2 and Plexin-A4, which have been implicated in other neurodevelopmental processes.MethodsWe performed immunohistochemical and neuroanatomical analyses of thalamocortical wiring and subpallial development in Sema6a and Plxna2;Plxna4 null mutant mice and analyzed the expression of these genes in relevant structures.ResultsIn Plxna2;Plxna4 double mutants we discovered TCA pathfinding defects that mirrored those observed in Sema6a mutants, suggesting that Semaphorin-6A–Plexin-A2/Plexin-A4 signaling might mediate dLGN axon guidance at subpallial level.In order to understand where and when Semaphorin-6A, Plexin-A2 and Plexin-A4 may be required for proper subpallial TCA guidance, we then characterized their spatiotemporal expression dynamics during early TCA development. We observed that the thalamic neurons whose axons are misrouted in these mutants normally express Semaphorin-6A but not Plexin-A2 or Plexin-A4. By contrast, all three proteins are expressed in corridor cells and other structures in the developing basal ganglia.This could be consistent with the Plexins acting as guidance signals through Sema6A as a receptor on dLGN axons, and/or with an indirect effect on TCA guidance due to functions in morphogenesis of subpallial intermediate targets. In support of the latter possibility, we observed that in both Plxna2;Plxna4 and Sema6a mutants some IC guidepost cells abnormally localize in correspondence of the ventral path misrouted TCAs elongate into.ConclusionsThese findings implicate Semaphorin-6A–Plexin-A2/Plexin-A4 interactions in dLGN axon guidance and in the spatiotemporal organization of guidepost cell populations in the mammalian subpallium.

2018 ◽  
Author(s):  
Chizu Nakamoto ◽  
Elaine Durward ◽  
Masato Horie ◽  
Masaru Nakamoto

SUMMARY STATEMENTNell2 is an ipsilateral layer-specific axon guidance cue in the visual thalamus and contributes to establishment of the eye-specific retinogeniculate projection by specifically inhibiting contralateral retinal axons.ABSTRACTIn mammals with binocular vision, retinal ganglion cell (RGC) axons from each eye project to eye-specific layers in the contralateral and ipsilateral dorsal lateral geniculate nucleus (dLGN). Although layer-specific axon guidance cues that discriminate contralateral and ipsilateral RGC axons have long been postulated as a key mechanism for development of the eye-specificretinogeniculate projection, the molecular nature of such cues has remained elusive. Here we show that the extracellular glycoprotein Nell2 (also known as Nel) is expressed in the dorsomedial region of the dLGN, which corresponds to the layer receiving ipsilateral RGC axons. In Nell2 mutant mice, contralateral RGC axons invaded the ipsilateral layer of the dLGN, and ipsilateral axons terminated in partially fragmented patches, forming a mosaic pattern of contralateral and ipsilateral axon termination zones. In vitro, Nell2 exerted inhibitory effects on contralateral, but not ipsilateral, RGC axons. These results provide evidence that Nell2 acts as a layer-specific positional label in the dLGN that discriminates contralateral and ipsilateral RGC axons, and that it plays essential roles in establishment of the eye-specific projection patterns in the retinogeniculate system.


2020 ◽  
Vol 124 (2) ◽  
pp. 404-417 ◽  
Author(s):  
Peter W. Campbell ◽  
Gubbi Govindaiah ◽  
Sean P. Masterson ◽  
Martha E. Bickford ◽  
William Guido

The thalamic reticular nucleus (TRN) modulates thalamocortical transmission through inhibition. In mouse, TRN terminals in the dorsal lateral geniculate nucleus (dLGN) form synapses with relay neurons but not interneurons. Stimulation of TRN terminals in dLGN leads to a frequency-dependent form of inhibition, with higher rates of stimulation leading to a greater suppression of spike firing. Thus, TRN inhibition appears more dynamic than previously recognized, having a graded rather than an all-or-none impact on thalamocortical transmission.


Sign in / Sign up

Export Citation Format

Share Document