axon guidance
Recently Published Documents


TOTAL DOCUMENTS

1357
(FIVE YEARS 215)

H-INDEX

101
(FIVE YEARS 10)

2022 ◽  
Vol 10 (1) ◽  
pp. 3
Author(s):  
Dana K. Tucker ◽  
Chloe S. Adams ◽  
Gauri Prasad ◽  
Brian D. Ackley

Neurons form elaborate networks by guiding axons and dendrites to appropriate destinations. Neurites require information about the relative body axes during the initial projection from the cell body, and failure to receive or interpret those cues correctly can result in outgrowth errors. We identified a mutation in the Ig superfamily member syg-2 in a screen for animals with anterior/posterior (A/P) axon guidance defects. We found that syg-2 and its cognate Ig family member syg-1 appear to function in a linear genetic pathway to control the outgrowth of GABAergic axons. We determined that this pathway works in parallel to Wnt signaling. Specifically, mutations in syg-2 or syg-1 selectively affected the embryonically derived Dorsal D-type (DD) GABAergic neurons. We found no evidence that these mutations affected the Ventral D-type neurons (VD) that form later, during the first larval stage. In addition, mutations in syg-1 or syg-2 could result in the DD neurons forming multiple processes, becoming bipolar, rather than the expected pseudounipolar morphology. Given SYG-2′s essential function in synaptogenesis of the hermaphrodite-specific neurons (HSNs), we also examined DD neuron synapses in syg-2 mutants. We found syg-2 mutants had a decreased number of synapses formed, but synaptic morphology was largely normal. These results provide further evidence that the GABAergic motorneurons use multiple guidance pathways during development.


2022 ◽  
Author(s):  
Qinglei Xu ◽  
Yanli Guo ◽  
Jing Zhao ◽  
Mingzheng Liu ◽  
Allan P. Schinckel ◽  
...  

Abstract Background: Weaned pigs often have more aggressive behavior after mixing, which has negative effects on animal welfare and growth performance. Identification of functional single nucleotide polymorphisms (SNPs) related to aggressive behavior of pigs would provide valuable molecular markers of aggressive behavioral trait for genetic improvement program. Rho GTPase Activating Protein 24 (ARHGAP24) gene plays an important role in regulating the process of axon guidance, which may impact aggressive behavior of pigs. Results: By re-sequencing the entire coding region, partially adjacent introns and the 5’ and 3’ flanking regions, 6 and 4 SNPs were identified in the 5’ flanking region and 5’ untranslated region (UTR) of porcine ARHGAP24 gene, respectively. Association analyses revealed that 9 SNPs were significantly associated with aggressive behavioral traits (P = < 1.00 × 10−4 - 4.51 × 10−2), and their haplotypes were significantly associated with aggressive behavior (P = < 1.00 × 10−4 - 2.99 × 10−2). The core promoter region of ARHGAP24 gene was identified between -670 bp and -1113 bp. Furthermore, the luciferase activity of allele A of rs335052970 was significantly less than that of allele G, suggesting the transcriptional activity of ARHGAP24 gene was inhibited by allele A of rs335052970. It was identified that the transcription factor p53 bound to the transcription factor binding sites (TFBSs) containing allele A of rs335052970. In porcine primary neural cells, p53 bind to the target promoter region of ARHGAP24 gene, reduce its promoter transcriptional activity, and then reduce its messenger RNA (mRNA) and protein expression through axon guidance pathway.Conclusion: The results demonstrated that ARHGAP24 gene had significant genetic effects on aggressive behavioral traits of pigs. Therefore, rs335052970 in ARHGAP24 gene can be used as a molecular marker to select less aggressive pigs and improve animal welfare.


2022 ◽  
Vol 17 (1) ◽  
Author(s):  
Ryan P. Cheng ◽  
Puneet Dang ◽  
Alemji A. Taku ◽  
Yoon Ji Moon ◽  
Vi Pham ◽  
...  

Abstract Background Olfactory Sensory Neuron (OSN) axons project from the zebrafish olfactory epithelium to reproducible intermediate target locations in the olfactory bulb called protoglomeruli at early stages in development. Two classes of OSNs expressing either OMP or TRPC2 exclusively target distinct, complementary protoglomeruli. Using RNAseq, we identified axon guidance receptors nrp2a and nrp2b, and their ligand sema3fa, as potential guidance factors that are differentially expressed between these two classes of OSNs. Methods To investigate their role in OSN axon guidance, we assessed the protoglomerular targeting fidelity of OSNs labeled by OMP:RFP and TRPC2:Venus transgenes in nrp2a, nrp2b, or sema3fa mutants. We used double mutant and genetic interaction experiments to interrogate the relationship between the three genes. We used live time-lapse imaging to compare the dynamic behaviors of OSN growth cones during protoglomerular targeting in heterozygous and mutant larvae. Results The fidelity of protoglomerular targeting of TRPC2-class OSNs is degraded in nrp2a, nrp2b, or sema3fa mutants, as axons misproject into OMP-specific protoglomeruli and other ectopic locations in the bulb. These misprojections are further enhanced in nrp2a;nrp2b double mutants suggesting that nrp2s work at least partially in parallel in the same guidance process. Results from genetic interaction experiments are consistent with sema3fa acting in the same biological pathway as both nrp2a and nrp2b. Live time-lapse imaging was used to examine the dynamic behavior of TRPC2-class growth cones in nrp2a mutants compared to heterozygous siblings. Some TRPC2-class growth cones ectopically enter the dorsal-medial region of the bulb in both groups, but in fully mutant embryos, they are less likely to correct the error through retraction. The same result was observed when TRPC2-class growth cone behavior was compared between sema3fa heterozygous and sema3fa mutant larvae. Conclusions Our results suggest that nrp2a and nrp2b expressed in TRPC2-class OSNs help prevent their mixing with axon projections in OMP-specific protoglomeruli, and further, that sema3fa helps to exclude TRPC2-class axons by repulsion from the dorsal-medial bulb.


2021 ◽  
Vol 15 ◽  
Author(s):  
Ana Belén Iglesias González ◽  
Jon E. T. Jakobsson ◽  
Jennifer Vieillard ◽  
Malin C. Lagerström ◽  
Klas Kullander ◽  
...  

The spinal locomotor network is frequently used for studies into how neuronal circuits are formed and how cellular activity shape behavioral patterns. A population of dI6 interneurons, marked by the Doublesex and mab-3 related transcription factor 3 (Dmrt3), has been shown to participate in the coordination of locomotion and gaits in horses, mice and zebrafish. Analyses of Dmrt3 neurons based on morphology, functionality and the expression of transcription factors have identified different subtypes. Here we analyzed the transcriptomes of individual cells belonging to the Dmrt3 lineage from zebrafish and mice to unravel the molecular code that underlies their subfunctionalization. Indeed, clustering of Dmrt3 neurons based on their gene expression verified known subtypes and revealed novel populations expressing unique markers. Differences in birth order, differential expression of axon guidance genes, neurotransmitters, and their receptors, as well as genes affecting electrophysiological properties, were identified as factors likely underlying diversity. In addition, the comparison between fish and mice populations offers insights into the evolutionary driven subspecialization concomitant with the emergence of limbed locomotion.


Development ◽  
2021 ◽  
Vol 148 (24) ◽  
Author(s):  
Samantha A. Russell ◽  
Kaitlin M. Laws ◽  
Greg J. Bashaw

ABSTRACT The Netrin receptor Frazzled/Dcc (Fra in Drosophila) functions in diverse tissue contexts to regulate cell migration, axon guidance and cell survival. Fra signals in response to Netrin to regulate the cytoskeleton and also acts independently of Netrin to directly regulate transcription during axon guidance in Drosophila. In other contexts, Dcc acts as a tumor suppressor by directly promoting apoptosis. In this study, we report that Fra is required in the Drosophila female germline for the progression of egg chambers through mid-oogenesis. Loss of Fra in the germline, but not the somatic cells of the ovary, results in the degeneration of egg chambers. Although a failure in nutrient sensing and disruptions in egg chamber polarity can result in degeneration at mid-oogenesis, these factors do not appear to be affected in fra germline mutants. However, similar to the degeneration that occurs in those contexts, the cell death effector Dcp-1 is activated in fra germline mutants. The function of Fra in the female germline is independent of Netrin and requires the transcriptional activation domain of Fra. In contrast to the role of Dcc in promoting cell death, our observations reveal a role for Fra in regulating germline survival by inhibiting apoptosis.


2021 ◽  
Author(s):  
Thanh T Le ◽  
Samantha L Payne ◽  
Maia N Buckwald ◽  
Lily A Hayes ◽  
Christopher B Burge ◽  
...  

AbstractIn breast cancer, nerve presence has been correlated with more invasive disease and worse prognosis, yet the mechanisms by which different types of peripheral nerves drive tumor progression remain poorly understood. In this study, we identified sensory nerves as more abundant in human triple-negative breast cancer (TNBC) tumors. Coinjection of sensory neurons isolated from the dorsal root ganglia (DRG) of adult female mice with human TNBC cells in immunocompromised mice increased the number of lung metastases. Direct in vitro co-culture of human TNBC cells with the dorsal root ganglia (DRG) of adult female mice revealed that TNBC cells adhere to sensory neuron fibers leading to an increase in migration speed. Species-specific RNA sequencing revealed that co-culture of TNBC cells with sensory nerves upregulates the expression of genes associated with cell migration and adhesion in cancer cells. We demonstrate that the axon guidance molecule Plexin B3 mediates cancer cell adhesion to and migration on sensory nerves. Together, our results identify a novel mechanism by which nerves contribute to breast cancer migration and metastasis by inducing a shift in TNBC cell gene expression and support the rationale for disrupting neuron-cancer cell interactions to target metastasis.SignificanceThe presence of nerves in breast tumors has been associated with poor outcome. Understanding the mechanisms by which nerves contribute to tumor progression could help identify novel strategies to target metastatic disease.


2021 ◽  
Author(s):  
Harsha Mahabaleshwar ◽  
P.V. Asharani ◽  
Tricia Loo Yi Jun ◽  
Shze Yung Koh ◽  
Melissa R. Pitman ◽  
...  

SUMMARYImmigration of mesenchymal cells into the growing fin and limb buds drives distal outgrowth, with subsequent tensile forces between these cells essential for fin and limb morphogenesis. Morphogens derived from the apical domain of the fin, orientate limb mesenchyme cell polarity, migration, division and adhesion. The zebrafish mutant stomp displays defects in fin morphogenesis including blister formation and associated loss of orientation and adhesion of immigrating fin mesenchyme cells. Positional cloning of stomp identified a mutation in the gene encoding the axon guidance ligand, Slit3. We provide evidence that Slit ligands derived from immigrating mesenchyme act via Robo receptors at the Apical Ectodermal Ridge (AER) to promote release of sphingosine-1-phosphate (S1P). S1P subsequently diffuses back to the mesenchyme to promote their polarisation, orientation, positioning and adhesion to the interstitial matrix of the fin fold. We thus demonstrate coordination of the Slit-Robo and S1P signalling pathways in fin fold morphogenesis. Our work introduces a mechanism regulating the orientation, positioning and adhesion of its constituent cells.


Bone ◽  
2021 ◽  
pp. 116305
Author(s):  
Yoshimitsu Nakanishi ◽  
Sujin Kang ◽  
Atsushi Kumanogoh

Sign in / Sign up

Export Citation Format

Share Document