scholarly journals Molecular phylogeny of historical micro-invertebrate specimens using de novo sequence assembly

2020 ◽  
Author(s):  
R.J.S Orr ◽  
M. M. Sannum ◽  
S. Boessenkool ◽  
E. Di Martino ◽  
D.P. Gordon ◽  
...  

AbstractResolution of relationships at lower taxonomic levels is crucial for answering many evolutionary questions, and as such, sufficiently varied species representation is vital. This latter goal is not always achievable with relatively fresh samples. To alleviate the difficulties in procuring rarer taxa, we have seen increasing utilization of historical specimens in building molecular phylogenies using high throughput sequencing. This effort, however, has mainly focused on large-bodied or well-studied groups, with small-bodied and under-studied taxa under-prioritized. Here, we present a pipeline that utilizes both historical and contemporary specimens, to increase the resolution of phylogenetic relationships among understudied and small-bodied metazoans, namely, cheilostome bryozoans. In this study, we pioneer sequencing of air-dried bryozoans, utilizing a recent library preparation method for low DNA input. We use the de novo mitogenome assembly from the target specimen itself as reference for iterative mapping, and the comparison thereof. In doing so, we present mitochondrial and ribosomal RNA sequences of 43 cheilostomes representing 37 species, including 14 from historical samples ranging from 50 to 149 years old. The inferred phylogenetic relationships of these samples, analyzed together with publicly available sequence data, are shown in a statistically well-supported 65 taxa and 17 genes cheilostome tree. Finally, the methodological success is emphasized by circularizing a total of 27 mitogenomes, seven from historical cheilostome samples. Our study highlights the potential of utilizing DNA from micro-invertebrate specimens stored in natural history collections for resolving phylogenetic relationships between species.

Taxon ◽  
1988 ◽  
Vol 37 (1) ◽  
pp. 135-138 ◽  
Author(s):  
Kelly P. Steele ◽  
Kent E. Holsinger ◽  
Robert K. Jansen ◽  
David W. Taylor

2021 ◽  
Author(s):  
Víctor García-Olivares ◽  
Adrián Muñoz-Barrera ◽  
José Miguel Lorenzo-Salazar ◽  
Carlos Zaragoza-Trello ◽  
Luis A. Rubio-Rodríguez ◽  
...  

AbstractThe mitochondrial genome (mtDNA) is of interest for a range of fields including evolutionary, forensic, and medical genetics. Human mitogenomes can be classified into evolutionary related haplogroups that provide ancestral information and pedigree relationships. Because of this and the advent of high-throughput sequencing (HTS) technology, there is a diversity of bioinformatic tools for haplogroup classification. We present a benchmarking of the 11 most salient tools for human mtDNA classification using empirical whole-genome (WGS) and whole-exome (WES) short-read sequencing data from 36 unrelated donors. Besides, because of its relevance, we also assess the best performing tool in third-generation long noisy read WGS data obtained with nanopore technology for a subset of the donors. We found that, for short-read WGS, most of the tools exhibit high accuracy for haplogroup classification irrespective of the input file used for the analysis. However, for short-read WES, Haplocheck and MixEmt were the most accurate tools. Based on the performance shown for WGS and WES, and the accompanying qualitative assessment, Haplocheck stands out as the most complete tool. For third-generation HTS data, we also showed that Haplocheck was able to accurately retrieve mtDNA haplogroups for all samples assessed, although only after following assembly-based approaches (either based on a referenced-based assembly or a hybrid de novo assembly). Taken together, our results provide guidance for researchers to select the most suitable tool to conduct the mtDNA analyses from HTS data.


1997 ◽  
Vol 75 (6) ◽  
pp. 963-970 ◽  
Author(s):  
André-Denis G. Wright ◽  
Denis H. Lynn

Phylogenetic relationships within the largest family of entodiniomorphid rumen ciliates, the Ophryoscolecidae, were inferred from comparisons of small-subunit ribosomal RNA gene sequences. These included three new sequences from Diplodinium dentatum (1638 base pairs (bp)), Eudiplodinium maggii (1637 bp), and Ophryoscolex purkynjei (1636 bp). Using morphological characters, Lubinsky constructed a cladogram of the Ophryoscolecidae, and on the basis of his analysis, he divided the family into three subfamilies (Entodiniinae, Diplodiniinae, Ophryoscolecinae) to reflect his "natural" groupings (G. Lubinsky. 1957. Can. J. Zool. 35: 141 – 159). Our cladistic analysis, based on the limited morphological and ultrastructural data available, indicates that there are no synapomorphies supporting the Diplodiniinae sensu Lubinsky. However, based upon the six 18S sequences for the Ophryoscolecidae, the rumen ciliates are monophyletic and fall into three distinct groups corresponding to Lubinsky's subfamilial division of the family. Our molecular analysis shows Entodinium to be the earliest branching rumen ciliate (subfamily Entodiniinae) and Eudiplodinium, not Diplodiium, branching first among the diplodiniines.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Russell J. S. Orr ◽  
Marianne N. Haugen ◽  
Björn Berning ◽  
Philip Bock ◽  
Robyn L. Cumming ◽  
...  

Abstract Background Understanding the phylogenetic relationships among species is one of the main goals of systematic biology. Simultaneously, credible phylogenetic hypotheses are often the first requirement for unveiling the evolutionary history of traits and for modelling macroevolutionary processes. However, many non-model taxa have not yet been sequenced to an extent such that statistically well-supported molecular phylogenies can be constructed for these purposes. Here, we use a genome-skimming approach to extract sequence information for 15 mitochondrial and 2 ribosomal operon genes from the cheilostome bryozoan family, Adeonidae, Busk, 1884, whose current systematics is based purely on morphological traits. The members of the Adeonidae are, like all cheilostome bryozoans, benthic, colonial, marine organisms. Adeonids are also geographically widely-distributed, often locally common, and are sometimes important habitat-builders. Results We successfully genome-skimmed 35 adeonid colonies representing 6 genera (Adeona, Adeonellopsis, Bracebridgia, Adeonella, Laminopora and Cucullipora). We also contributed 16 new, circularised mitochondrial genomes to the eight previously published for cheilostome bryozoans. Using the aforementioned mitochondrial and ribosomal genes, we inferred the relationships among these 35 samples. Contrary to some previous suggestions, the Adeonidae is a robustly supported monophyletic clade. However, the genera Adeonella and Laminopora are in need of revision: Adeonella is polyphyletic and Laminopora paraphyletically forms a clade with some Adeonella species. Additionally, we assign a sequence clustering identity using cox1 barcoding region of 99% at the species and 83% at the genus level. Conclusions We provide sequence data, obtained via genome-skimming, that greatly increases the resolution of the phylogenetic relationships within the adeonids. We present a highly-supported topology based on 17 genes and substantially increase availability of circularised cheilostome mitochondrial genomes, and highlight how we can extend our pipeline to other bryozoans.


2019 ◽  
Vol 35 (21) ◽  
pp. 4207-4212 ◽  
Author(s):  
Narciso M Quijada ◽  
David Rodríguez-Lázaro ◽  
Jose María Eiros ◽  
Marta Hernández

Abstract Motivation The progress of High Throughput Sequencing (HTS) technologies and the reduction in the sequencing costs are such that Whole Genome Sequencing (WGS) could replace many traditional laboratory assays and procedures. Exploiting the volume of data produced by HTS platforms requires substantial computing skills and this is the main bottleneck in the implementation of WGS as a routine laboratory technique. The way in which the vast amount of results are presented to researchers and clinicians with no specialist knowledge of genome sequencing is also a significant issue. Results Here we present TORMES, a user-friendly pipeline for WGS analysis of bacteria from any origin generated by HTS on Illumina platforms. TORMES is designed for non-bioinformatician users, and automates the steps required for WGS analysis directly from the raw sequence data: sequence quality filtering, de novo assembly, draft genome ordering against a reference, genome annotation, multi-locus sequence typing (MLST), searching for antibiotic resistance and virulence genes, and pangenome comparisons. Once the analysis is finished, TORMES generates and interactive web-like report that can be opened in any web browser and shared and revised by researchers in a simple manner. TORMES can be run by using very simple commands and represent a quick an easy way to perform WGS analysis. Availability and implementation TORMES is free available at https://github.com/nmquijada/tormes. Supplementary information Supplementary data are available at Bioinformatics online.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eric S. Tvedte ◽  
Jane Michalski ◽  
Shaoji Cheng ◽  
Rayanna S. Patkus ◽  
Luke J. Tallon ◽  
...  

AbstractLibrary preparation for high-throughput sequencing applications is a critical step in producing representative, unbiased sequencing data. The iGenomX Riptide High Throughput Rapid Library Prep Kit purports to provide high-quality sequencing data with lower costs compared to other Illumina library kits. To test these claims, we compared sequence data quality of Riptide libraries to libraries constructed with KAPA Hyper and NEBNext Ultra. Across several single-source genome samples, mapping performance and de novo assembly of Riptide libraries were similar to conventional libraries prepared with the same DNA. Poor performance of some libraries resulted in low sequencing depth. In particular, degraded DNA samples may be challenging to sequence with Riptide. There was little cross-well plate contamination with the overwhelming majority of reads belong to the proper source genomes. The sequencing of metagenome samples using different Riptide primer sets resulted in variable taxonomic assignment of reads. Increased adoption of the Riptide kit will decrease library preparation costs. However, this method might not be suitable for degraded DNA.


Sign in / Sign up

Export Citation Format

Share Document