scholarly journals Subthreshold repertoire and threshold dynamics of midbrain dopamine neuron firing in vivo

2020 ◽  
Author(s):  
Kanako Otomo ◽  
Jessica Perkins ◽  
Anand Kulkarni ◽  
Strahinja Stojanovic ◽  
Jochen Roeper ◽  
...  

AbstractThe firing pattern of ventral midbrain dopamine neurons is controlled by afferent and intrinsic activity to generate prediction error signals that are essential for reward-based learning. Given the absence of intracellular in vivo recordings in the last three decades, the subthreshold membrane potential events that cause changes in dopamine neuron firing patterns remain unknown. By establishing stable in vivo whole-cell recordings of >100 spontaneously active midbrain dopamine neurons in anaesthetized mice, we identified the repertoire of subthreshold membrane potential signatures associated with distinct in vivo firing patterns. We demonstrate that dopamine neuron in vivo activity deviates from a single spike pacemaker pattern by eliciting transient increases in firing rate generated by at least two diametrically opposing biophysical mechanisms: a transient depolarization resulting in high frequency plateau bursts associated with a reactive, depolarizing shift in action potential threshold; and a prolonged hyperpolarization preceding slower rebound bursts characterized by a predictive, hyperpolarizing shift in action potential threshold. Our findings therefore illustrate a framework for the biophysical implementation of prediction error and sensory cue coding in dopamine neurons by tuning action potential threshold dynamics.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Kanako Otomo ◽  
Jessica Perkins ◽  
Anand Kulkarni ◽  
Strahinja Stojanovic ◽  
Jochen Roeper ◽  
...  

AbstractThe in vivo firing patterns of ventral midbrain dopamine neurons are controlled by afferent and intrinsic activity to generate sensory cue and prediction error signals that are essential for reward-based learning. Given the absence of in vivo intracellular recordings during the last three decades, the subthreshold membrane potential events that cause changes in dopamine neuron firing patterns remain unknown. To address this, we established in vivo whole-cell recordings and obtained over 100 spontaneously active, immunocytochemically-defined midbrain dopamine neurons in isoflurane-anaesthetized adult mice. We identified a repertoire of subthreshold membrane potential signatures associated with distinct in vivo firing patterns. Dopamine neuron activity in vivo deviated from single-spike pacemaking by phasic increases in firing rate via two qualitatively distinct biophysical mechanisms: 1) a prolonged hyperpolarization preceding rebound bursts, accompanied by a hyperpolarizing shift in action potential threshold; and 2) a transient depolarization leading to high-frequency plateau bursts, associated with a depolarizing shift in action potential threshold. Our findings define a mechanistic framework for the biophysical implementation of dopamine neuron firing patterns in the intact brain.





2015 ◽  
Vol 1622 ◽  
pp. 452-465 ◽  
Author(s):  
E. Kärkkäinen ◽  
L. Yavich ◽  
P.O. Miettinen ◽  
H. Tanila


1991 ◽  
Vol 84 (1-2) ◽  
pp. 53-64 ◽  
Author(s):  
C. S. Tung ◽  
J. Grenhoff ◽  
T. H. Svensson


Nature ◽  
2007 ◽  
Vol 448 (7149) ◽  
pp. 73-77 ◽  
Author(s):  
Päivi Lindholm ◽  
Merja H. Voutilainen ◽  
Juha Laurén ◽  
Johan Peränen ◽  
Veli-Matti Leppänen ◽  
...  




2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Amanda L. Brown ◽  
Trevor A. Day ◽  
Christopher V. Dayas ◽  
Doug W. Smith

The ability to microdissect individual cells from the nervous system has enormous potential, as it can allow for the study of gene expression in phenotypically identified cells. However, if the resultant gene expression profiles are to be accurately ascribed, it is necessary to determine the extent of contamination by nontarget cells in the microdissected sample. Here, we show that midbrain dopamine neurons can be laser-microdissected to a high degree of enrichment and purity. The average enrichment for tyrosine hydroxylase (TH) gene expression in the microdissected sample relative to midbrain sections was approximately 200-fold. For the dopamine transporter (DAT) and the vesicular monoamine transporter type 2 (Vmat2), average enrichments were approximately 100- and 60-fold, respectively. Glutamic acid decarboxylase (Gad65) expression, a marker for GABAergic neurons, was several hundredfold lower than dopamine neuron-specific genes. Glial cell and glutamatergic neuron gene expression were not detected in microdissected samples. Additionally, SN and VTA dopamine neurons had significantly different expression levels of dopamine neuron-specific genes, which likely reflects functional differences between the two cell groups. This study demonstrates that it is possible to laser-microdissect dopamine neurons to a high degree of cell purity. Therefore gene expression profiles can be precisely attributed to the targeted microdissected cells.



Neuron ◽  
2008 ◽  
Vol 60 (1) ◽  
pp. 123-136 ◽  
Author(s):  
Ryan M. Drenan ◽  
Sharon R. Grady ◽  
Paul Whiteaker ◽  
Tristan McClure-Begley ◽  
Sheri McKinney ◽  
...  


2008 ◽  
Vol 28 (36) ◽  
pp. 8908-8913 ◽  
Author(s):  
E. B. Margolis ◽  
J. M. Mitchell ◽  
J. Ishikawa ◽  
G. O. Hjelmstad ◽  
H. L. Fields


Sign in / Sign up

Export Citation Format

Share Document