scholarly journals Sensory and motor electrophysiological mapping of the cerebellum in humans

2020 ◽  
Author(s):  
Reiko Ashida ◽  
Peter Walsh ◽  
Jonathan C.W. Brooks ◽  
Richard J. Edwards ◽  
Nadia L. Cerminara ◽  
...  

AbstractDamage to the cerebellum during posterior fossa surgery can lead to ataxia and in paediatric cases, the risk of cerebellar mutism syndrome. Animal electrophysiological and human imaging studies have shown compartmentalisation of sensorimotor and cognitive functions within the cerebellum. In the present study, electrophysiological monitoring of sensory and motor pathways was carried out to assess the location of limb sensorimotor representation within the human cerebellum, as a potential approach for real time assessment of neurophysiological integrity to reduce the incidence of cerebellar surgical morbidities.Thirteen adult and paediatric patients undergoing posterior fossa surgery were recruited. For sensory mapping (n=8), electrical stimulation was applied to the median nerves, the posterior tibial nerves, or proximal and distal limb muscles and evoked field potential responses were sought on the cerebellar surface. For motor mapping (n=5), electrical stimulation was applied to the surface of the cerebellum and evoked EMG responses were sought in facial and limb muscles.Evoked potentials on the cerebellar surface were found in two patients (25% of cases). In one patient, the evoked response was located on the surface of the right inferior posterior cerebellum in response to stimulation of the right leg. In the second patient, stimulation of the extensor digitorum muscle in the left forearm evoked a response on the surface of the left inferior posterior lobe. In the motor mapping cases no evoked EMG responses could be found.Intraoperative electrophysiological mapping, therefore, indicates it is possible to record evoked potentials on the surface of the human cerebellum in response to peripheral stimulation.

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Reiko Ashida ◽  
Peter Walsh ◽  
Jonathan C. W. Brooks ◽  
Nadia L. Cerminara ◽  
Richard Apps ◽  
...  

AbstractCerebellar damage during posterior fossa surgery in children can lead to ataxia and risk of cerebellar mutism syndrome. Compartmentalisation of sensorimotor and cognitive functions within the cerebellum have been demonstrated in animal electrophysiology and human imaging studies. Electrophysiological monitoring was carried out under general anaesthesia to assess the limb sensorimotor representation within the human cerebellum for assessment of neurophysiological integrity to reduce the incidence of surgical morbidities. Thirteen adult and paediatric patients undergoing posterior fossa surgery were recruited. Sensory evoked field potentials were recorded in response to mapping (n = 8) to electrical stimulation of limb nerves or muscles. For motor mapping (n = 5), electrical stimulation was applied to the surface of the cerebellum and evoked EMG responses were sought in facial and limb muscles. Sensory evoked potentials were found in two patients (25%). Responses were located on the surface of the right inferior posterior cerebellum to stimulation of the right leg in one patient, and on the left inferior posterior lobe in another patient to stimulation of left forearm. No evoked EMG responses were found for the motor mapping. The present study identifies challenges with using neurophysiological methods to map functional organization within the human cerebellum and considers ways to improve success.


2021 ◽  
Author(s):  
Reiko Ashida ◽  
Peter Walsh ◽  
Jonathan C.W. Brooks ◽  
Nadia L. Cerminara ◽  
Richard Apps ◽  
...  

Abstract Cerebellar damage during posterior fossa surgery in children can lead to ataxia and risk of cerebellar mutism syndrome. Compartmentalisation of sensorimotor and cognitive functions within the cerebellum have been demonstrated in animal electrophysiology and human imaging studies. Electrophysiological monitoring was carried out to assess the limb sensorimotor representation within the human cerebellum for assessment of neurophysiological integrity to reduce the incidence of surgical morbidities. Thirteen adult and paediatric patients undergoing posterior fossa surgery were recruited. Sensory evoked field potentials were recorded in response to mapping (n=8): to electrical stimulation of nerves or muscles. For motor mapping (n=5), electrical stimulation was applied to the surface of the cerebellum and evoked EMG responses were sought in facial and limb muscles. Evoked potentials were found in two patients (25%). Responses were located on the surface of the right inferior posterior cerebellum to stimulation of the right leg in one patient, and on the left inferior posterior lobe in another patient to stimulation of left forearm. No evoked EMG responses were found for the motor mapping. The present study identifies challenges with using neurophysiological methods to map functional organization within the human cerebellum and considers ways to improve success.


2001 ◽  
Vol 91 (4) ◽  
pp. 1713-1722 ◽  
Author(s):  
Fadi Xu ◽  
Tongrong Zhou ◽  
Tonya Gibson ◽  
Donald T. Frazier

Electrical stimulation of the rostral fastigial nucleus (FNr) alters respiration via activation of local neurons. We hypothesized that this FNr-mediated respiratory response was dependent on the integrity of the nucleus gigantocellularis of the medulla (NGC). Electrical stimulation of the FNr in 15 anesthetized and tracheotomized spontaneously breathing rats significantly altered ventilation by 35.2 ± 11.0% ( P < 0.01) with the major effect being excitatory (78%). This respiratory response did not significantly differ from control after lesions of the NGC via bilateral microinjection of kainic or ibotenic acid (4.5 ± 1.9%; P > 0.05) but persisted in sham controls. Eight other rats, in which horseradish peroxidase (HRP) solution was previously microinjected into the left NGC, served as nonstimulation controls or were exposed to either 15-min repeated electrical stimulation of the right FNr or hypercapnia for 90 min. Histochemical and immunocytochemical data showed that the right FNr contained clustered HRP-labeled neurons, most of which were double labeled with c-Fos immunoreactivity in both electrically and CO2-stimulated rats. We conclude that the NGC receives monosynaptic FNr inputs and is required for fully expressing FNr-mediated respiratory responses.


2009 ◽  
Vol 72 (4) ◽  
pp. 395-400 ◽  
Author(s):  
Hiroyuki Muramatsu ◽  
Kyouichi Suzuki ◽  
Tatsuya Sasaki ◽  
Masato Matsumoto ◽  
Jun Sakuma ◽  
...  

2002 ◽  
Vol 87 (4) ◽  
pp. 2195-2199 ◽  
Author(s):  
David L. Zealear ◽  
Ricardo J. Rodriguez ◽  
Thomas Kenny ◽  
Mark J. Billante ◽  
Young Cho ◽  
...  

The effect of electrical stimulation of the denervated posterior cricoarytenoid (PCA) muscle on its subsequent reinnervation was explored in the canine. Eight animals were implanted with a planar array of 36 electrodes for chronic stimulation and recording of spontaneous and evoked electromyographic (EMG) potentials across the entire fan-shaped surface of a muscle pair. Normative EMG data were recorded from each electrode site before unilateral nerve section, and from the innervated partner after nerve section. After randomizing the animals to experimental and control groups, the right recurrent laryngeal nerve innervating the PCA abductor muscle and its adductor antagonists was sectioned and reanastomosed. The PCA muscle in four experimental animals was continuously stimulated during the 11-mo experiment, using a 1-s, 30-pps, biphasic pulse train composed of 1-ms pulses 2–6 mA in amplitude and repeated every 10 s. The remaining four animals served as nonstimulated controls. Appropriate reinnervation by native inspiratory motoneurons was indexed behaviorally by the magnitude of vocal fold opening and electromyographically by the potential across all electrode sites. Inappropriate reinnervation by foreign adductor motoneurons was quantitated by recording EMG potentials evoked reflexly by stimulation of sensory afferents of the laryngeal mucosa. All four experimental animals showed a greater level of correct PCA muscle reinnervation ( P < 0.0064) and a lesser level of incorrect reinnervation ( P < 0.0084) than the controls. Direct muscle stimulation also appeared to enhance the overall magnitude of reinnervation, but the effect was not as strong ( P < 0.113). These findings are consistent with a previous report and suggest that stimulation of a mammalian muscle may profoundly affect its receptivity to reinnervation by a particular motoneuron type.


2009 ◽  
Vol 61 (5) ◽  
pp. 1073-1082 ◽  
Author(s):  
Yiqun Xue ◽  
Xiying Chen ◽  
Thomas Grabowski ◽  
Jinhu Xiong

Sign in / Sign up

Export Citation Format

Share Document