Electrical Stimulation of a Denervated Muscle Promotes Selective Reinnervation by Native Over Foreign Motoneurons

2002 ◽  
Vol 87 (4) ◽  
pp. 2195-2199 ◽  
Author(s):  
David L. Zealear ◽  
Ricardo J. Rodriguez ◽  
Thomas Kenny ◽  
Mark J. Billante ◽  
Young Cho ◽  
...  

The effect of electrical stimulation of the denervated posterior cricoarytenoid (PCA) muscle on its subsequent reinnervation was explored in the canine. Eight animals were implanted with a planar array of 36 electrodes for chronic stimulation and recording of spontaneous and evoked electromyographic (EMG) potentials across the entire fan-shaped surface of a muscle pair. Normative EMG data were recorded from each electrode site before unilateral nerve section, and from the innervated partner after nerve section. After randomizing the animals to experimental and control groups, the right recurrent laryngeal nerve innervating the PCA abductor muscle and its adductor antagonists was sectioned and reanastomosed. The PCA muscle in four experimental animals was continuously stimulated during the 11-mo experiment, using a 1-s, 30-pps, biphasic pulse train composed of 1-ms pulses 2–6 mA in amplitude and repeated every 10 s. The remaining four animals served as nonstimulated controls. Appropriate reinnervation by native inspiratory motoneurons was indexed behaviorally by the magnitude of vocal fold opening and electromyographically by the potential across all electrode sites. Inappropriate reinnervation by foreign adductor motoneurons was quantitated by recording EMG potentials evoked reflexly by stimulation of sensory afferents of the laryngeal mucosa. All four experimental animals showed a greater level of correct PCA muscle reinnervation ( P < 0.0064) and a lesser level of incorrect reinnervation ( P < 0.0084) than the controls. Direct muscle stimulation also appeared to enhance the overall magnitude of reinnervation, but the effect was not as strong ( P < 0.113). These findings are consistent with a previous report and suggest that stimulation of a mammalian muscle may profoundly affect its receptivity to reinnervation by a particular motoneuron type.

1966 ◽  
Vol 51 (2) ◽  
pp. 281-289 ◽  
Author(s):  
J. Moll ◽  
G. H. Zeilmaker

ABSTRACT Castrated young adult inbred male rats bearing ovarian transplants were subjected to electrical stimulation of the hypothalamus. This was done in order to investigate whether discharge of ovulatory amounts of gonadotrophins could be induced in such male animals by this procedure. Bilateral stimulations with unipolar electrodes and a DC current of 1.5 mA applied during 10 seconds induced in the ovarian grafts histological changes indicating the discharge of ovulatory amounts of gonadotrophins. In animals killed one day after stimulation these changes consisted of displacement of the ova towards the centre of the follicles with loosening of the cumulus oophorus. In one animal the ova had left the follicles. In animals killed three days after stimulation numerous young corpora lutea could be observed. These results were obtained with electrode tips either close to the median eminence, or in the preoptic area. Shamstimulations were ineffective. Some of the experimental animals received progesterone pretreatment. This rendered the stimulations ineffective, if continued until the day preceding stimulation, but seemed without effect on the results of stimulation, if two or three days without progesterone preceded the stimulations.


2001 ◽  
Vol 91 (4) ◽  
pp. 1713-1722 ◽  
Author(s):  
Fadi Xu ◽  
Tongrong Zhou ◽  
Tonya Gibson ◽  
Donald T. Frazier

Electrical stimulation of the rostral fastigial nucleus (FNr) alters respiration via activation of local neurons. We hypothesized that this FNr-mediated respiratory response was dependent on the integrity of the nucleus gigantocellularis of the medulla (NGC). Electrical stimulation of the FNr in 15 anesthetized and tracheotomized spontaneously breathing rats significantly altered ventilation by 35.2 ± 11.0% ( P < 0.01) with the major effect being excitatory (78%). This respiratory response did not significantly differ from control after lesions of the NGC via bilateral microinjection of kainic or ibotenic acid (4.5 ± 1.9%; P > 0.05) but persisted in sham controls. Eight other rats, in which horseradish peroxidase (HRP) solution was previously microinjected into the left NGC, served as nonstimulation controls or were exposed to either 15-min repeated electrical stimulation of the right FNr or hypercapnia for 90 min. Histochemical and immunocytochemical data showed that the right FNr contained clustered HRP-labeled neurons, most of which were double labeled with c-Fos immunoreactivity in both electrically and CO2-stimulated rats. We conclude that the NGC receives monosynaptic FNr inputs and is required for fully expressing FNr-mediated respiratory responses.


2020 ◽  
Author(s):  
Reiko Ashida ◽  
Peter Walsh ◽  
Jonathan C.W. Brooks ◽  
Richard J. Edwards ◽  
Nadia L. Cerminara ◽  
...  

AbstractDamage to the cerebellum during posterior fossa surgery can lead to ataxia and in paediatric cases, the risk of cerebellar mutism syndrome. Animal electrophysiological and human imaging studies have shown compartmentalisation of sensorimotor and cognitive functions within the cerebellum. In the present study, electrophysiological monitoring of sensory and motor pathways was carried out to assess the location of limb sensorimotor representation within the human cerebellum, as a potential approach for real time assessment of neurophysiological integrity to reduce the incidence of cerebellar surgical morbidities.Thirteen adult and paediatric patients undergoing posterior fossa surgery were recruited. For sensory mapping (n=8), electrical stimulation was applied to the median nerves, the posterior tibial nerves, or proximal and distal limb muscles and evoked field potential responses were sought on the cerebellar surface. For motor mapping (n=5), electrical stimulation was applied to the surface of the cerebellum and evoked EMG responses were sought in facial and limb muscles.Evoked potentials on the cerebellar surface were found in two patients (25% of cases). In one patient, the evoked response was located on the surface of the right inferior posterior cerebellum in response to stimulation of the right leg. In the second patient, stimulation of the extensor digitorum muscle in the left forearm evoked a response on the surface of the left inferior posterior lobe. In the motor mapping cases no evoked EMG responses could be found.Intraoperative electrophysiological mapping, therefore, indicates it is possible to record evoked potentials on the surface of the human cerebellum in response to peripheral stimulation.


2009 ◽  
Vol 61 (5) ◽  
pp. 1073-1082 ◽  
Author(s):  
Yiqun Xue ◽  
Xiying Chen ◽  
Thomas Grabowski ◽  
Jinhu Xiong

2000 ◽  
Vol 93 (5) ◽  
pp. 774-783 ◽  
Author(s):  
Maxwell Boakye ◽  
Sean C. Huckins ◽  
Nikolaus M. Szeverenyi ◽  
Bobby I. Taskey ◽  
Charles J. Hodge

Object. Functional magnetic resonance (fMR) imaging was used to determine patterns of cerebral blood flow changes in the somatosensory cortex that result from median nerve stimulation (MNS).Methods. Ten healthy volunteers underwent stimulation of the right median nerve at frequencies of 5.1 Hz (five volunteers) and 50 Hz (five volunteers). The left median nerve was stimulated at frequencies of 5.1 Hz (two volunteers) and 50 Hz (five volunteers). Tactile stimulation (with a soft brush) of the right index finger was also applied (three volunteers). Functional MR imaging data were transformed into Talairach space coordinates and averaged by group. Results showed significant activation (p < 0.001) in the following regions: primary sensorimotor cortex (SMI), secondary somatosensory cortex (SII), parietal operculum, insula, frontal cortex, supplementary motor area, and posterior parietal cortices (Brodmann's Areas 7 and 40). Further analysis revealed no statistically significant difference (p > 0.05) between volumes of cortical activation in the SMI or SII resulting from electrical stimuli at 5.1 Hz and 50 Hz. There existed no significant differences (p > 0.05) in cortical activity in either the SMI or SII resulting from either left- or right-sided MNS. With the exception of the frontal cortex, areas of cortical activity in response to tactile stimulation were anatomically identical to those regions activated by electrical stimulation. In the SMI and SII, activation resulting from tactile stimulation was not significantly different (p > 0.05) from that resulting from electrical stimulation.Conclusions. Electrical stimulation of the median nerve is a reproducible and effective means of activating multiple somatosensory cortical areas, and fMR imaging can be used to investigate the complex network that exists between these areas.


2020 ◽  
Author(s):  
Marco Capogrosso ◽  
Beatrice Barra ◽  
Sara Conti ◽  
Matthew Perich ◽  
Katie Zhuang ◽  
...  

Abstract Regaining arm motor control is critical for people with paralysis. Despite promising results on grasping, no technology could restore effective arm control. Here, we show that electrical stimulation of the cervical spinal cord enabled three monkeys with cervical spinal injury to execute functional arm movements. We designed an epidural interface that engaged surviving spinal circuits via the recruitment of large sensory afferents to produce movement. Simple stimulation bursts produced sustained joint movements which, triggered by movement-related intracortical signals, enabled monkeys with arm paralysis to perform an unconstrained, three-dimensional reach and grasp task. This restoration of voluntary motor control was enabled by the synergistic integration of spared descending commands and electrical stimulation within the spinal cord. The simplicity of this technology promises realistic clinical translation.


2018 ◽  
Vol 16 (2) ◽  
pp. 37-41
Author(s):  
Nikolay S Efimov ◽  
Yulia N Bessolova ◽  
Inessa V Karpova ◽  
Andrei A Lebedev ◽  
Petr D Shabanov

In the protocols of modern pharmacological studies of a self-stimulation reaction in rodents, stimulating electrodes are implanted as a rule unilaterally. The reinforcing properties of the left and right hypothalamus were suggested to be identical. The aim of the study was to clear up if the possibilities of the left and right hypothalamus to produce self-stimulation are similar or not. Methods. The study was carried out on adult male Wistar rats. The electrodes were implanted into the lateral hypothalamus bilaterally. The rats, in which an approach reaction was observed, learned self-stimulation in the Skinner box with stimulation of the left or right hypothalamus as a reinforcing agent descending thresholds of stimulation up to minimal one. Results. Self-stimulation of the left hypothalamus gave an approach reaction in the majority of rats (81.8%), self-stimulation reaction was developed in 72.7% of rats. Only 46.2% rats reacted on stimulation of the right hypothalamus, self-stimulation reaction was developed in 30.8% of rats. The thresholds of positive and negative reactions registered after electrical stimulation of both sides of hypothalamus were significantly differed (H(3, N = 31) = 14,92; p = 0,002). And these changes were not connected with lateralization but with sign of reaction: in general the thresholds of approach reaction were higher than thresholds of avoidance. Conclusion. In the paper, the fact of different possibility of approach reaction and self-stimulation development as a result of electrical stimulation of the left and right hypothalamus in rats has been described. After stimulation of the left hypothalamus, a possibility to receive positive reaction and to form self-stimulation on its basis is higher than after stimulation of the right hypothalamus. (For citation: Efimov NS, Bessolova YN, Karpova IV, et al. Asymmetry of reinforcing properties of the lateral hypothalamus in the self-stimulation test. Reviews on Clinical Pharmacology and Drug Therapy. 2018;16(2):37-41. doi: 10.17816/RCF16237-41).


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Reiko Ashida ◽  
Peter Walsh ◽  
Jonathan C. W. Brooks ◽  
Nadia L. Cerminara ◽  
Richard Apps ◽  
...  

AbstractCerebellar damage during posterior fossa surgery in children can lead to ataxia and risk of cerebellar mutism syndrome. Compartmentalisation of sensorimotor and cognitive functions within the cerebellum have been demonstrated in animal electrophysiology and human imaging studies. Electrophysiological monitoring was carried out under general anaesthesia to assess the limb sensorimotor representation within the human cerebellum for assessment of neurophysiological integrity to reduce the incidence of surgical morbidities. Thirteen adult and paediatric patients undergoing posterior fossa surgery were recruited. Sensory evoked field potentials were recorded in response to mapping (n = 8) to electrical stimulation of limb nerves or muscles. For motor mapping (n = 5), electrical stimulation was applied to the surface of the cerebellum and evoked EMG responses were sought in facial and limb muscles. Sensory evoked potentials were found in two patients (25%). Responses were located on the surface of the right inferior posterior cerebellum to stimulation of the right leg in one patient, and on the left inferior posterior lobe in another patient to stimulation of left forearm. No evoked EMG responses were found for the motor mapping. The present study identifies challenges with using neurophysiological methods to map functional organization within the human cerebellum and considers ways to improve success.


1990 ◽  
Vol 259 (5) ◽  
pp. H1365-H1373 ◽  
Author(s):  
C. K. Butler ◽  
F. M. Smith ◽  
R. Cardinal ◽  
D. A. Murphy ◽  
D. A. Hopkins ◽  
...  

The purpose of the present study was to examine cardiac effects induced by electrical stimulation (1-4 V, 1 ms, 200 Hz) of discrete loci within the ganglionated plexi located on canine atria and ventricles. When 20 loci in the right atrial ventral ganglionated plexi of 11 anesthetized open-chest dogs were stimulated, bradycardia and/or right and left atrial force suppression occurred when, on average, 15% of these loci were stimulated. Bradycardia and atrial force suppression were elicited when, on average, 8% of 15 loci in the left atrial ventral ganglionated plexi of eight dogs was stimulated. When these loci were restimulated after acute decentralization, cardiac responses were attenuated or occasionally eliminated. After atropine (1 mg/kg iv) administration, repeat stimulation of loci in the right but not left atrial ganglionated plexus induced tachycardia. Stimulation of loci in the right ventricular ganglionated plexus after the subsequent administration of desipramine (1 mg/kg iv) in six dogs resulted in an increase in right ventricular conus intramyocardial pressure. After hexamethonium administration (10 mg/kg iv, followed by a continuous infusion of 1 mg.kg-1.min-1), sympathetic responses were no longer elicited from one of the five dogs in which loci in the right atrial ganglionated plexi and from two of the six dogs in which loci of the right ventricular ganglionated plexus had elicited responses. We conclude that atrial and ventricular ganglionated plexi contain efferent parasympathetic, efferent sympathetic, and afferent neurons.


Sign in / Sign up

Export Citation Format

Share Document