scholarly journals Simple cloning of large natural product biosynthetic gene cluster by CRISPR/Cas12a-mediated fast direct capturing strategy

2020 ◽  
Author(s):  
Mindong Liang ◽  
Leshi Liu ◽  
Weishan Wang ◽  
Xiaoqian Zeng ◽  
Jiakun Liu ◽  
...  

ABSTRACTDirectly cloning of biosynthetic gene clusters (BGCs) from even unculturable microbial genomes revolutionized nature products-based drug discovery. However, it is still very challenging to efficiently cloning, for example, the large (e.g. > 80kb) BGCs, especially for samples with high GC content in Streptomyces. In this study, by combining the advantages of CRISPR/Cas12a cleavage and bacterial artificial chromosome (BAC) library construction, we developed a simple, fast yet efficient in vitro platform for direct cloning of large BGCs based on CRISPR/Cas12a, named CAT-FISHING (CRISPR/Cas12a-mediated fast direct biosynthetic gene cluster cloning). It was demonstrated by the efficient direct cloning of large DNA fragments from bacterial artificial chromosomes or high GC (>70%) Streptomyces genomic DNA. Moreover, surugamides, encoded by a captured 87-kb gene cluster, was expressed and identified in a cluster-free Streptomyces chassis. These results indicate that CAT-FISHING is now poised to revolutionize bioactive small molecules (BSMs) drug discovery and lead a renaissance of interest in microorganisms as a source of BSMs for drug development.TABLE OF CONTENTSSIGNIFICANCE STATEMENTNatural products (NPs) are one of the most important resources for drug leads. One bottleneck of NPs-based drug discovery is the inefficient cloning approach for BGCs. To address it, we established a simple, fast and efficient BGC directed cloning method CAT-FISHING by combining the advantages of CRISPR/Cas12a (e.g. high specificity) and bacterial artificial chromosome (BAC) library (e.g. large DNA fragment and high GC content). As demonstrations, a series of DNA fragments ranging from 49 kb to 139 kb were successfully cloned. After further optimization, our method was able to efficiently clone and express an 87-kb long, GC-rich (76%) surugamides BGC in a Streptomyces chassis with reduced time-cost. CAT-FISHING presented in this study would much facilitate the process of NPs discovery.

ChemBioChem ◽  
2012 ◽  
Vol 13 (13) ◽  
pp. 1946-1952 ◽  
Author(s):  
Xiaoying Bian ◽  
Fan Huang ◽  
Francis A. Stewart ◽  
Liqiu Xia ◽  
Youming Zhang ◽  
...  

2021 ◽  
Vol 85 (3) ◽  
pp. 714-721
Author(s):  
Risa Takao ◽  
Katsuyuki Sakai ◽  
Hiroyuki Koshino ◽  
Hiroyuki Osada ◽  
Shunji Takahashi

ABSTRACT Recent advances in genome sequencing have revealed a variety of secondary metabolite biosynthetic gene clusters in actinomycetes. Understanding the biosynthetic mechanism controlling secondary metabolite production is important for utilizing these gene clusters. In this study, we focused on the kinanthraquinone biosynthetic gene cluster, which has not been identified yet in Streptomyces sp. SN-593. Based on chemical structure, 5 type II polyketide synthase gene clusters were listed from the genome sequence of Streptomyces sp. SN-593. Among them, a candidate gene cluster was selected by comparing the gene organization with grincamycin, which is synthesized through an intermediate similar to kinanthraquinone. We initially utilized a BAC library for subcloning the kiq gene cluster, performed heterologous expression in Streptomyces lividans TK23, and identified the production of kinanthraquinone and kinanthraquinone B. We also found that heterologous expression of kiqA, which belongs to the DNA-binding response regulator OmpR family, dramatically enhanced the production of kinanthraquinones.


2014 ◽  
Vol 111 (5) ◽  
pp. 1957-1962 ◽  
Author(s):  
Kazuya Yamanaka ◽  
Kirk A. Reynolds ◽  
Roland D. Kersten ◽  
Katherine S. Ryan ◽  
David J. Gonzalez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document