scholarly journals Sonic hedgehog signaling directs patterned cell remodeling during cranial neural tube closure

2020 ◽  
Author(s):  
Eric R. Brooks ◽  
Mohammed T. Islam ◽  
Kathryn V. Anderson ◽  
Jennifer A. Zallen

AbstractNeural tube closure defects are a major cause of infant mortality, with exencephaly accounting for nearly one-third of cases. However, the mechanisms of cranial neural tube closure are not well understood. Here we show that this process involves a tissue-wide pattern of apical constriction controlled by Sonic hedgehog (Shh) signaling. Midline cells in the mouse midbrain neuroepithelium are short with large apical surfaces, whereas lateral cells are taller and undergo synchronous apical constriction, driving neural fold elevation. Embryos lacking the Shh effector Gli2 fail to produce appropriate midline cell architecture, whereas embryos with expanded Shh signaling, including the IFT-A complex mutants Ift122 and Ttc21b and embryos expressing activated Smoothened, display apical constriction defects in lateral cells. Disruption of lateral, but not midline, cell remodeling results in exencephaly. These results reveal a morphogenetic program of patterned apical constriction governed by Shh signaling that generates structural changes in the developing mammalian brain.

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Eric R Brooks ◽  
Mohammed Tarek Islam ◽  
Kathryn V Anderson ◽  
Jennifer A Zallen

Neural tube closure defects are a major cause of infant mortality, with exencephaly accounting for nearly one-third of cases. However, the mechanisms of cranial neural tube closure are not well understood. Here, we show that this process involves a tissue-wide pattern of apical constriction controlled by Sonic hedgehog (Shh) signaling. Midline cells in the mouse midbrain neuroepithelium are flat with large apical surfaces, whereas lateral cells are taller and undergo synchronous apical constriction, driving neural fold elevation. Embryos lacking the Shh effector Gli2 fail to produce appropriate midline cell architecture, whereas embryos with expanded Shh signaling, including the IFT-A complex mutants Ift122 and Ttc21b and embryos expressing activated Smoothened, display apical constriction defects in lateral cells. Disruption of lateral, but not midline, cell remodeling results in exencephaly. These results reveal a morphogenetic program of patterned apical constriction governed by Shh signaling that generates structural changes in the developing mammalian brain.


Development ◽  
2002 ◽  
Vol 129 (10) ◽  
pp. 2507-2517 ◽  
Author(s):  
Patricia Ybot-Gonzalez ◽  
Patricia Cogram ◽  
Dianne Gerrelli ◽  
Andrew J. Copp

Neural tube closure is a fundamental embryonic event whose molecular regulation is poorly understood. As mouse neurulation progresses along the spinal axis, there is a shift from midline neural plate bending to dorsolateral bending. Here, we show that midline bending is not essential for spinal closure since, in its absence, the neural tube can close by a ‘default’ mechanism involving dorsolateral bending, even at upper spinal levels. Midline and dorsolateral bending are regulated by mutually antagonistic signals from the notochord and surface ectoderm. Notochordal signaling induces midline bending and simultaneously inhibits dorsolateral bending. Sonic hedgehog is both necessary and sufficient to inhibit dorsolateral bending, but is neither necessary nor sufficient to induce midline bending, which seems likely to be regulated by another notochordal factor. Attachment of surface ectoderm cells to the neural plate is required for dorsolateral bending, which ensures neural tube closure in the absence of sonic hedgehog signaling.


PLoS ONE ◽  
2013 ◽  
Vol 8 (11) ◽  
pp. e81854 ◽  
Author(s):  
Chih-Wen Chu ◽  
Emma Gerstenzang ◽  
Olga Ossipova ◽  
Sergei Y. Sokol

Development ◽  
2017 ◽  
Vol 144 (7) ◽  
pp. 1307-1316 ◽  
Author(s):  
Makoto Suzuki ◽  
Masanao Sato ◽  
Hiroshi Koyama ◽  
Yusuke Hara ◽  
Kentaro Hayashi ◽  
...  

2003 ◽  
Vol 13 (24) ◽  
pp. 2125-2137 ◽  
Author(s):  
Saori L. Haigo ◽  
Jeffrey D. Hildebrand ◽  
Richard M. Harland ◽  
John B. Wallingford

Development ◽  
2021 ◽  
Vol 148 (2) ◽  
pp. dev195008
Author(s):  
Izabela Kowalczyk ◽  
Chanjae Lee ◽  
Elisabeth Schuster ◽  
Josefine Hoeren ◽  
Valentina Trivigno ◽  
...  

ABSTRACTPathogenic mutations in the endocytic receptor LRP2 in humans are associated with severe neural tube closure defects (NTDs) such as anencephaly and spina bifida. Here, we have combined analysis of neural tube closure in mouse and in the African Clawed Frog Xenopus laevis to elucidate the etiology of Lrp2-related NTDs. Lrp2 loss of function impaired neuroepithelial morphogenesis, culminating in NTDs that impeded anterior neural plate folding and neural tube closure in both model organisms. Loss of Lrp2 severely affected apical constriction as well as proper localization of the core planar cell polarity (PCP) protein Vangl2, demonstrating a highly conserved role of the receptor in these processes, which are essential for neural tube formation. In addition, we identified a novel functional interaction of Lrp2 with the intracellular adaptor proteins Shroom3 and Gipc1 in the developing forebrain. Our data suggest that, during neurulation, motifs within the intracellular domain of Lrp2 function as a hub that orchestrates endocytic membrane removal for efficient apical constriction, as well as PCP component trafficking in a temporospatial manner.


Development ◽  
1998 ◽  
Vol 125 (24) ◽  
pp. 4919-4930 ◽  
Author(s):  
M.A. Selleck ◽  
M.I. Garcia-Castro ◽  
K.B. Artinger ◽  
M. Bronner-Fraser

To define the timing of neural crest formation, we challenged the fate of presumptive neural crest cells by grafting notochords, Sonic Hedgehog- (Shh) or Noggin-secreting cells at different stages of neurulation in chick embryos. Notochords or Shh-secreting cells are able to prevent neural crest formation at open neural plate levels, as assayed by DiI-labeling and expression of the transcription factor, Slug, suggesting that neural crest cells are not committed to their fate at this time. In contrast, the BMP signaling antagonist, Noggin, does not repress neural crest formation at the open neural plate stage, but does so if injected into the lumen of the closing neural tube. The period of Noggin sensitivity corresponds to the time when BMPs are expressed in the dorsal neural tube but are down-regulated in the non-neural ectoderm. To confirm the timing of neural crest formation, Shh or Noggin were added to neural folds at defined times in culture. Shh inhibits neural crest production at early stages (0-5 hours in culture), whereas Noggin exerts an effect on neural crest production only later (5-10 hours in culture). Our results suggest three phases of neurulation that relate to neural crest formation: (1) an initial BMP-independent phase that can be prevented by Shh-mediated signals from the notochord; (2) an intermediate BMP-dependent phase around the time of neural tube closure, when BMP-4 is expressed in the dorsal neural tube; and (3) a later pre-migratory phase which is refractory to exogenous Shh and Noggin.


Sign in / Sign up

Export Citation Format

Share Document