cell remodeling
Recently Published Documents


TOTAL DOCUMENTS

115
(FIVE YEARS 47)

H-INDEX

21
(FIVE YEARS 3)

Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 197
Author(s):  
Daria A. Zharova ◽  
Alexandra N. Ivanova ◽  
Irina V. Drozdova ◽  
Alla I. Belyaeva ◽  
Olga N. Boldina ◽  
...  

The microalga Haematococcus lacustris (formerly H. pluvialis) is able to accumulate high amounts of the carotenoid astaxanthin in the course of adaptation to stresses like salinity. Technologies aimed at production of natural astaxanthin for commercial purposes often involve salinity stress; however, after a switch to stressful conditions, H. lacustris experiences massive cell death which negatively influences astaxanthin yield. This study addressed the possibility to improve cell survival in H. lacustris subjected to salinity via manipulation of the levels of autophagy using AZD8055, a known inhibitor of TOR kinase previously shown to accelerate autophagy in several microalgae. Addition of NaCl in concentrations of 0.2% or 0.8% to the growth medium induced formation of autophagosomes in H. lacustris, while simultaneous addition of AZD8055 up to a final concentration of 0.2 µM further stimulated this process. AZD8055 significantly improved the yield of H. lacustris cells after 5 days of exposure to 0.2% NaCl. Strikingly, this occurred by acceleration of cell growth, and not by acceleration of aplanospore formation. The level of astaxanthin synthesis was not affected by AZD8055. However, cytological data suggested a role of autophagosomes, lysosomes and Golgi cisternae in cell remodeling during high salt stress.


Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 233
Author(s):  
Joachim Greiner ◽  
Teresa Schiatti ◽  
Wenzel Kaltenbacher ◽  
Marica Dente ◽  
Alina Semenjakin ◽  
...  

Freshly isolated primary cardiomyocytes (CM) are indispensable for cardiac research. Experimental CM research is generally incompatible with life of the donor animal, while human heart samples are usually small and scarce. CM isolation from animal hearts, traditionally performed by coronary artery perfusion of enzymes, liberates millions of cells from the heart. However, due to progressive cell remodeling following isolation, freshly isolated primary CM need to be used within 4–8 h post-isolation for most functional assays, meaning that the majority of cells is essentially wasted. In addition, coronary perfusion-based isolation cannot easily be applied to human tissue biopsies, and it does not straightforwardly allow for assessment of regional differences in CM function within the same heart. Here, we provide a method of multi-day CM isolation from one animal heart, yielding calcium-tolerant ventricular and atrial CM. This is based on cell isolation from cardiac tissue slices following repeated (usually overnight) storage of the tissue under conditions that prolong CM viability beyond the day of organ excision by two additional days. The maintenance of cells in their near-native microenvironment slows the otherwise rapid structural and functional decline seen in isolated CM during attempts for prolonged storage or culture. Multi-day slice-based CM isolation increases the amount of useful information gained per animal heart, improving reproducibility and reducing the number of experimental animals required in basic cardiac research. It also opens the doors to novel experimental designs, including exploring same-heart regional differences.


Author(s):  
Xiaomin Shang ◽  
Changhong Wang ◽  
Li Shen ◽  
Fei Sheng ◽  
Xiaohui He ◽  
...  

Plasmodium falciparum undergoes a series of asexual replications in human erythrocytes after infection, which are effective targets for combatting malaria. Here, we report roles of an ApiAP2 transcription factor PfAP2-EXP2 (PF3D7_0611200) in the intraerythrocytic developmental cycle of P. falciparum. PfAP2-EXP2 conditional knockdown resulted in an asexual growth defect but without an appreciable effect on parasite morphology. Further ChIP-seq analysis revealed that PfAP2-EXP2 targeted genes related to virulence and interaction between erythrocytes and parasites. Especially, PfAP2-EXP2 regulation of euchromatic genes does not depend on recognizing specific DNA sequences, while a CCCTAAACCC motif is found in its heterochromatic binding sites. Combined with transcriptome profiling, we suggest that PfAP2-EXP2 is participated in the intraerythrocytic development by affecting the expression of genes related to cell remodeling at the schizont stage. In summary, this study explores an ApiAP2 member plays an important role for the P. falciparum blood-stage replication, which suggests a new perspective for malaria elimination.


2021 ◽  
Vol 12 ◽  
Author(s):  
Oriana Kreutzfeld ◽  
Josephine Grützke ◽  
Alyssa Ingmundson ◽  
Katja Müller ◽  
Kai Matuschewski

Host cell remodeling is critical for successful Plasmodium replication inside erythrocytes and achieved by targeted export of parasite-encoded proteins. In contrast, during liver infection the malarial parasite appears to avoid protein export, perhaps to limit exposure of parasite antigens by infected liver cells. HSP101, the force-generating ATPase of the protein translocon of exported proteins (PTEX) is the only component that is switched off during early liver infection. Here, we generated transgenic Plasmodium berghei parasite lines that restore liver stage expression of HSP101. HSP101 expression in infected hepatocytes was achieved by swapping the endogenous promoter with the ptex150 promoter and by inserting an additional copy under the control of the elongation one alpha (ef1α) promoter. Both promoters drive constitutive and, hence, also pre-erythrocytic expression. Transgenic parasites were able to complete the life cycle, but failed to export PEXEL-proteins in early liver stages. Our results suggest that PTEX-dependent early liver stage export cannot be restored by addition of HSP101, indicative of alternative export complexes or other functions of the PTEX core complex during liver infection.


2021 ◽  
Author(s):  
Alexandra Blancke Soares ◽  
Jan Stäcker ◽  
Svenja Schwald ◽  
Wieteke Hoijmakers ◽  
Nahla Galal Metwally ◽  
...  

AbstractIntracellular malaria blood stage parasites remodel their host cell, a process essential for parasite survival and a cause of pathology in malaria infections. Host cell remodeling depends on the export of different classes of exported parasite proteins into the infected red blood cell (RBC). Here we show that members of a recently discovered group of difficult to predict exported proteins harbor an N-terminal export domain, similar to other classes of exported proteins, indicating that this is a common theme among all classes of exported proteins. For one such protein, MSRP6 (MSP-7 related protein 6), we identified a second, untypical export-mediating domain that corresponded to its MSP7-like region. In addition to its function in export, this domain also mediated attachment to the Maurer’s clefts, prominent parasite-induced structures in the host cell where MSRP6 is located. Using BioID with the Maurer’s clefts attachment domain of MSRP6 to identify interactors and compartment neighbors in live parasites we discovered a novel complex of proteins at the Maurer’s clefts. We show that this complex is necessary for the anchoring and maintaining the structural integrity of the Maurer’s clefts. The Maurer’s clefts are believed to be involved in the transport of the major virulence factor PfEMP1 to the host cell surface where it mediates cytoadherence of infected RBCs to endothelial cells, a main reason for the importance of host cell modifications for parasite virulence in the human host. Taking advantage of MSRP6 complex mutants and IT4 parasites that we modified to express only one specific PfEMP1 we find that abolishing Maurer’s clefts anchoring was neither needed for PfEMP1 transport to the host cell surface nor for cytoadherence. Altogether, this work reveals parasite proteins involved in Maurer’s clefts anchoring and maintenance and unexpectedly finds that these functions are dispensable for virulence factor transport and surface display.


Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1815
Author(s):  
Clara Crescioli

Women experience a dramatical raise in cardiovascular events after menopause. The decline in estrogens is pointed to as the major responsible trigger for the increased risk of cardiovascular disease (CVD). Indeed, the menopausal transition associates with heart macro-remodeling, which results from a fine-tuned cell micro-remodeling. The remodeling of cardiomyocytes is a biomolecular response to several physiologic and pathologic stimuli, allowing healthy adaptation in normal conditions or maladaptation in an unfavorable environment, ending in organ architecture disarray. Estrogens largely impinge on cardiomyocyte remodeling, but they cannot fully explain the sex-dimorphism of CVD risk. Albeit cell remodeling and adaptation are under multifactorial regulation, vitamin D emerges to exert significant protective effects, controlling some intracellular paths, often shared with estrogen signaling. In post-menopause, the unfavorable association of hypoestrogenism-D hypovitaminosis may converge towards maladaptive remodeling and contribute to increased CVD risk. The aim of this review is to overview the role of estrogens and vitamin D in female cardiac health, speculating on their potential synergistic effect in cardiomyocyte remodeling, an issue that is not yet fully explored. Further learning the crosstalk between these two steroids in the biomolecular orchestration of cardiac cell fate during adaptation may help the translational approach to future cardioprotective strategies for women health.


2021 ◽  
Vol 140 ◽  
pp. 35-46
Author(s):  
Chengcheng Liu ◽  
Hongjie Du ◽  
Yajie Wang ◽  
Ningyue Gong ◽  
Wenwen Qi ◽  
...  

2021 ◽  
Author(s):  
wenzhong liu ◽  
hualan li

Increased vascular permeability is a characteristic of Hantavirus illness, for which there is now no treatment. We employed the domain search method to investigate the Hantavirus protein in this present work. The results indicated that the membrane glycoprotein E protein (containing Gn-Gc) of Hantavirus had lipid phosphatase and C2-like domains. The E protein was a tensin phosphatase-like (PTEN) enzyme that could shuttle in the cytoplasm and cell membrane. In an acidic endosomal environment, Gn dissociates, exposing Gc's autophosphorylation region to complete autophosphorylation and activating the C2 domain. The C2 domain facilitates Gc's conformational transition, which is followed by Gc binding to the endosomal membrane. After being inserted into the endosomal membrane, the phosphatase domain of Gc phosphorylates PI(3,4,5)P3 on the endosomal membrane. Then converted PI(3,4,5)P3 to PI(4,5)P2 . PI(4,5)P2 bound to the N-terminal of Gc, completely anchoring the tetramer-shaped Gc to the endosomal membrane and forming a fusion hole. Then analogous to PTEN, phosphorylation of PI(3,4,5)P3 directly induced the disintegration of Gc tetramer. The enlargement of the fusion pore speeded up the fusion of the viral and endosomal membranes. Through the fusion hole, the virus's intracellular material was swiftly discharged into the cytoplasm. The C2 domain promoted the PKC signaling route during Hantavirus membrane fusion, whereas the phosphatase inhibited the PI3K signaling pathway. E protein's PTEN-like action impaired lipid metabolism and endothelial cell remodeling, increasing blood vessel permeability and resulting in renal and cardiac syndromes. Additionally, E protein inhibited the immune system and Akt-mediated eNOS activation, resulting in a cascade of consequences.


2021 ◽  
Vol 8 ◽  
Author(s):  
Weiming Wang ◽  
Tingting Zhao ◽  
Kang Geng ◽  
Gang Yuan ◽  
Yue Chen ◽  
...  

Smoking is one of the most important preventable factors causing peripheral artery disease (PAD). The purpose of this review is to comprehensively analyze and summarize the pathogenesis and clinical characteristics of smoking in PAD based on existing clinical, in vivo, and in vitro studies. Extensive searches and literature reviews have shown that a large amount of data exists on the pathological process underlying the effects of cigarette smoke and its components on PAD through various mechanisms. Cigarette smoke extracts (CSE) induce endothelial cell dysfunction, smooth muscle cell remodeling and macrophage phenotypic transformation through multiple molecular mechanisms. These pathological changes are the molecular basis for the occurrence and development of peripheral vascular diseases. With few discussions on the topic, we will summarize recent insights into the effect of smoking on regulating PAD through multiple pathways and its possible pathogenic mechanism.


Sign in / Sign up

Export Citation Format

Share Document