scholarly journals RT-RC-PCR: a novel and highly scalable next-generation sequencing method for simultaneous detection of SARS-COV-2 and typing variants of concern

Author(s):  
Christopher J Mattocks ◽  
Daniel Ward ◽  
Deborah JG Mackay

We describe a novel assay method: reverse-transcription reverse-complement polymerase chain reaction (RT-RC-PCR), which rationalises reverse transcription and NGS library preparation into a single closed tube reaction. By simplifying the analytical process and cross-contamination risks, RT-RC-PCR presents disruptive scalability and economy while using NGS and LIMS infrastructure widely available across health service, institutional and commercial laboratories. We present a validation of RT-RC-PCR for the qualitative detection of SARS-CoV-2 RNA by NGS. The limit of detection is comparable to real-time RT-PCR, and no obvious difference in sensitivity was detected between extracted nasopharyngeal swab (NPS) RNA and native saliva samples. The end point measurement of RT-RC-PCR is NGS of amplified sequences within the SARS-CoV-2 genome; we demonstrated its capacity to detect different variants using amplicons containing delH69-V70 and N501Y, both of which emerged in the UK Variant of Concern B.1.1.7 in 2020. In summary, RT-RC-PCR has potential to facilitate accurate mass testing at disruptive scale and cost, with concurrent detection of variants of concern.

1999 ◽  
Vol 62 (10) ◽  
pp. 1210-1214 ◽  
Author(s):  
SORAYA I. ROSENFIELD ◽  
LEE-ANN JAYKUS

A multiplex reverse transcription polymerase chain reaction (RT-PCR) method was developed for the simultaneous detection of the human enteroviruses, hepatitis A virus (HAV) and Norwalk virus (NV). Poliovirus type 1 (PV1) was chosen as a model for the human enterovirus group. Three different sets of primers were used to produce three size-specific amplicons of 435 bp, 270 bp, and 192 bp for PV1, NV, and HAV, respectively. RT-PCR products were separated by agarose gel electrophoresis, and amplicon identity was confirmed by Southern transfer followed by DNA hybridization using nonradio-active, digoxigenin-labeled internal probes. When tested on mixed, purified virus suspensions, the multiplex method achieved detection limits of ≤1 infectious unit (PV1 and HAV) or RT-PCR-amplifiable unit (NV) for all viruses. With further streamlining efforts such as single tube amplification and liquid hybridization, multiplex PCR offers advantages over cell culture methodology and monoplex PCR because it allows for rapid and cost-effective detection of several human enteric viruses in a single reaction tube.


Sign in / Sign up

Export Citation Format

Share Document