scholarly journals Insights from the first genome assembly of Onion (Allium cepa)

2021 ◽  
Author(s):  
Richard Finkers ◽  
Martijn P.W. van Kaauwen ◽  
Kai Ament ◽  
Karin Burger-Meijer ◽  
Raymond J. Egging ◽  
...  

Onion is an important vegetable crop with an estimated genome size of 16GB. We describe the de novo assembly and ab initio annotation of the genome of a doubled haploid onion line DHCU066619, which resulted in a final assembly of 14.9 Gb with a N50 of 461 Kb. Of which 2.2 Gb was ordered into 8 pseudomolecules using five genetic linkage maps. The remainder of the genome is available in 89.8 K scaffolds. Analysis of this genome shows that at least 72.4% of the genome is repetitive and consists, to a large extent, of (retro) transposons. Many (retro) transposons were already quite old as they had accumulated many mutations, facilitating their assembly, however, hampering their identification. The draft ab initio gene prediction indicated 540 925 putative gene models, which is far more than expected, possibly due to the presence of pseudogenes. 86,073 models showed similarity to published proteins (UNIPROT). No gene rich regions were found, genes are uniformly distributed over the genome. Analysis of synteny with A. sativum (garlic) showed collinearity but also major rearrangements between both species. Not-withstanding, this assembly is the first high-quality draft genome sequence available for the study of onion and will be a valuable resource for further research.

Author(s):  
Richard Finkers ◽  
Martijn van Kaauwen ◽  
Kai Ament ◽  
Karin Burger-Meijer ◽  
Raymond Egging ◽  
...  

Abstract Onion is an important vegetable crop with an estimated genome size of 16 Gb. We describe the de novo assembly and ab initio annotation of the genome of a doubled haploid onion line DHCU066619, which resulted in a final assembly of 14.9 Gb with a N50 of 464 Kb. Of this, 2.4 Gb was ordered into 8 pseudomolecules using four genetic linkage maps. The remainder of the genome is available in 89.6 K scaffolds. Only 72.4% of the genome could be identified as repetitive sequences and consist, to a large extent, of (retro) transposons. In addition, an estimated 20% of the putative (retro) transposons had accumulated a large number of mutations, hampering their identification, but facilitating their assembly. These elements are probably already quite old. The ab initio gene prediction indicated 540,925 putative gene models, which is far more than expected, possibly due to the presence of pseudogenes. Of these models, 47,066 showed RNASeq support. No gene rich regions were found, genes are uniformly distributed over the genome. Analysis of synteny with A. sativum (garlic) showed collinearity but also major rearrangements between both species. This assembly is the first high-quality genome sequence available for the study of onion and will be a valuable resource for further research.


2018 ◽  
Author(s):  
Justin Jiang ◽  
Andrea M. Quattrini ◽  
Warren R. Francis ◽  
Joseph F. Ryan ◽  
Estefanía Rodríguez ◽  
...  

AbstractBackgroundOver 3,000 species of octocorals (Cnidaria, Anthozoa) inhabit an expansive range of environments, from shallow tropical seas to the deep-ocean floor. They are important foundation species that create coral “forests” which provide unique niches and three-dimensional living space for other organisms. The octocoral genusRenillainhabits sandy, continental shelves in the subtropical and tropical Atlantic and eastern Pacific Oceans.Renillais especially interesting because it produces secondary metabolites for defense, exhibits bioluminescence, and produces a luciferase that is widely used in dual-reporter assays in molecular biology. Although several cnidarian genomes are currently available, the majority are from hexacorals. Here, we present ade novoassembly of theR. muellerigenome, making this the first complete draft genome from an octocoral.FindingsWe generated a hybridde novoassembly using the Maryland Super-Read Celera Assembler v.3.2.6 (MaSuRCA). The final assembly included 4,825 scaffolds and a haploid genome size of 172 Mb. A BUSCO assessment found 88% of metazoan orthologs present in the genome. An Augustusab initiogene prediction found 23,660 genes, of which 66% (15,635) had detectable similarity to annotated genes from the starlet sea anemone,Nematostella vectensis,or to the Uniprot database. Although theR. muellerigenome is smaller (172 Mb) than other publicly available, hexacoral genomes (256-448 Mb), theR. muellerigenome is similar to the hexacoral genomes in terms of the number of complete metazoan BUSCOs and predicted gene models.ConclusionsTheR. muellerihybrid genome provides a novel resource for researchers to investigate the evolution of genes and gene families within Octocorallia and more widely across Anthozoa. It will be a key resource for future comparative genomics with other corals and for understanding the genomic basis of coral diversity.


AoB Plants ◽  
2020 ◽  
Vol 12 (6) ◽  
Author(s):  
Morad M Mokhtar ◽  
Ebtissam H A Hussein ◽  
Salah El-Din S El-Assal ◽  
Mohamed A M Atia

Abstract Faba bean (Vicia faba) is an essential food and fodder legume crop worldwide due to its high content of proteins and fibres. Molecular markers tools represent an invaluable tool for faba bean breeders towards rapid crop improvement. Although there have historically been few V. faba genome resources available, several transcriptomes and mitochondrial genome sequence data have been released. These data in addition to previously developed genetic linkage maps represent a great resource for developing functional markers and maps that can accelerate the faba bean breeding programmes. Here, we present the Vicia faba Omics database (VfODB) as a comprehensive database integrating germplasm information, expressed sequence tags (ESTs), expressed sequence tags-simple sequence repeats (EST-SSRs), and mitochondrial-simple sequence repeats (mtSSRs), microRNA-target markers and genetic maps in faba bean. In addition, KEGG pathway-based markers and functional maps are integrated as a novel class of annotation-based markers/maps. Collectively, we developed 31 536 EST markers, 9071 EST-SSR markers and 3023 microRNA-target markers based on V. faba RefTrans V2 mining. By mapping 7940 EST and 2282 EST-SSR markers against the KEGG pathways database we successfully developed 107 functional maps. Also, 40 mtSSR markers were developed based on mitochondrial genome mining. On the data curation level, we retrieved 3461 markers representing 12 types of markers (CAPS, EST, EST-SSR, Gene marker, INDEL, Isozyme, ISSR, RAPD, SCAR, RGA, SNP and SSR), which mapped across 18 V. faba genetic linkage maps. VfODB provides two user-friendly tools to identify, classify SSR motifs and in silico amplify their targets. VfODB can serve as a powerful database and helpful platform for faba bean research community as well as breeders interested in Genomics-Assisted Breeding.


Genetics ◽  
2004 ◽  
Vol 166 (4) ◽  
pp. 1923-1933 ◽  
Author(s):  
Lorinda K Anderson ◽  
Naser Salameh ◽  
Hank W Bass ◽  
Lisa C Harper ◽  
W Z Cande ◽  
...  

Abstract Genetic linkage maps reveal the order of markers based on the frequency of recombination between markers during meiosis. Because the rate of recombination varies along chromosomes, it has been difficult to relate linkage maps to chromosome structure. Here we use cytological maps of crossing over based on recombination nodules (RNs) to predict the physical position of genetic markers on each of the 10 chromosomes of maize. This is possible because (1) all 10 maize chromosomes can be individually identified from spreads of synaptonemal complexes, (2) each RN corresponds to one crossover, and (3) the frequency of RNs on defined chromosomal segments can be converted to centimorgan values. We tested our predictions for chromosome 9 using seven genetically mapped, single-copy markers that were independently mapped on pachytene chromosomes using in situ hybridization. The correlation between predicted and observed locations was very strong (r2 = 0.996), indicating a virtual 1:1 correspondence. Thus, this new, high-resolution, cytogenetic map enables one to predict the chromosomal location of any genetically mapped marker in maize with a high degree of accuracy. This novel approach can be applied to other organisms as well.


2001 ◽  
Vol 102 (6-7) ◽  
pp. 1113-1122 ◽  
Author(s):  
J. Jansen ◽  
A. G. de Jong ◽  
J. W. van Ooijen

Genomics ◽  
1987 ◽  
Vol 1 (2) ◽  
pp. 174-181 ◽  
Author(s):  
Eric S. Lander ◽  
Philip Green ◽  
Jeff Abrahamson ◽  
Aaron Barlow ◽  
Mark J. Daly ◽  
...  

2003 ◽  
Vol 5 (3) ◽  
pp. 279-293 ◽  
Author(s):  
Gideon Khoo ◽  
Meng Huat Lim ◽  
Haridas Suresh ◽  
Damien K. Y. Gan ◽  
Kok Fang Lim ◽  
...  

2013 ◽  
Vol 33 (3) ◽  
pp. 743-748 ◽  
Author(s):  
M. D. Ruiz-Rodriguez ◽  
C. M. Avila ◽  
A. M. Torres ◽  
J. Fuchs ◽  
I. Schubert

Sign in / Sign up

Export Citation Format

Share Document