faba bean
Recently Published Documents


TOTAL DOCUMENTS

2635
(FIVE YEARS 752)

H-INDEX

55
(FIVE YEARS 9)

2022 ◽  
Vol 22 ◽  
pp. 100924
Author(s):  
Ling-Ling Ma ◽  
Jun-Ming Zhang ◽  
Gen Kaneko ◽  
Jun Xie ◽  
Jin-Hui Sun ◽  
...  

2022 ◽  
Author(s):  
Frehiwot Sileshi ◽  
Amsalu Nebiyu ◽  
Maarten Van Geel ◽  
Samuel Vanden Abeele ◽  
Gijs Du Laing ◽  
...  

2022 ◽  
Vol 14 (2) ◽  
pp. 799
Author(s):  
Rita Petlickaitė ◽  
Algirdas Jasinskas ◽  
Ramūnas Mieldažys ◽  
Kęstutis Romaneckas ◽  
Marius Praspaliauskas ◽  
...  

The paper presents the preparation and use of pressed solid biofuel of multi-crop plants (fibrous hemp (Cannabis sativa L.), maize (Zea mays L.) and faba bean (Vicia faba L.)) as mono, binary and trinomial crops. The results of the investigation show that three main chemical elements (carbon, oxygen and hydrogen) accounted for 93.1 to 94.9% of the biomass pellet content. The moisture content varied from 3.9 to 8.8%, ash content from 4.5 to 6.8% and calorific value from 16.8 to 17.1 MJ·kg−1. It was found that the density (DM) of all variants of pellets was very similar; the faba bean biomass pellets had the highest density of 1195.8 kg·m−3 DM. The initial ash deformation temperature (DT) of burning biomass pellets was detected, which varied from 976 to 1322 °C. High potassium (K), calcium (Ca) and phosphorus (P) concentrations were found in all types of biomass ash. The quantities of heavy metals in pellet ash were not large and did not exceed the permissible values according to Lithuanian legislation. These chemical properties of multi-crop biomass ash allow them to be used in agriculture for plant fertilization.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Lynn Abou-Khater ◽  
Fouad Maalouf ◽  
Abdulqader Jighly ◽  
Alsamman M. Alsamman ◽  
Diego Rubiales ◽  
...  

AbstractWeeds represent one of the major constraints for faba bean crop. The identification of molecular markers associated with key genes imparting tolerance to herbicides can facilitate and fasten the efficient and effective development of herbicide tolerant cultivars. We phenotyped 140 faba bean genotypes in three open field experiments at two locations in Lebanon and Morocco against three herbicide treatments (T1 metribuzin 250 g ai/ha; T2 imazethapyr 75 g ai/ha; T3 untreated) and one in greenhouse where T1 and T3 were applied. The same set was genotyped using genotyping by sequencing (GBS) which yield 10,794 high quality single nucleotide polymorphisms (SNPs). ADMIXTURE software was used to infer the population structure which revealed two ancestral subpopulations. To identify SNPs associated with phenological and yield related traits under herbicide treatments, Single-trait (ST) and Multi-trait (MT) Genome Wide Association Studies (GWAS) were fitted using GEMMA software, showing 10 and 14 highly significant associations, respectively. Genomic sequences containing herbicide tolerance associated SNPs were aligned against the NCBI database using BLASTX tool using default parameters to annotate candidate genes underlying the causal variants. SNPs from acidic endochitinase, LRR receptor-like serine/threonine-protein kinase RCH1, probable serine/threonine-protein kinase NAK, malate dehydrogenase, photosystem I core protein PsaA and MYB-related protein P-like were significantly associated with herbicide tolerance traits.


2022 ◽  
Author(s):  
Lisa Petzoldt ◽  
Bärbel Kroschewski ◽  
Timo Kautz

Abstract Aims Biopores offer favorable chemical, biological and physical properties for root growth in untilled soil layers. There they are considered as nutrient “hotspots” with preferential root growth. However, the literature lacks a quantification of metabolic activity due to nutrient acquisition of main crops while growing in the biopore sheath. Methods A pot experiment was performed to map the metabolic activity of roots, as indicated by pH change. The roots of spring barley (Hordeum vulgare L.), spring oilseed rape (Brassica napus L.) and faba bean (Vicia faba L.) were growing through the biopore sheath influenced by an earthworm (Lumbricus terrestris L.) or a taproot (Cichorium intybus L.), in comparison to subsoil without a pore (bulk soil). pH sensitive planar optodes were applied in order to image a planar section of the sheath, while preserving an intact biopore sheath during the experiment. Results Roots were first found in the field of view in worm biopore then root biopore and bulk soil. At time of the first measurement the pH value was highest in worm biopore sheath (LS-Mean±SEM: 7.16a±0.11), followed by root biopore sheath (6.99ab±0.12) and bulk soil (6.61b±0.12). In spring oilseed rape a significant alkalization (+0.80 Δ pH) was found over time in bulk soil. Faba bean significantly acidified the root biopore sheath (-0.73 Δ pH). Spring barley showed no significant pH changes. Conclusions The results of the current study reveal a trend of faster root growth through biopores and a higher initial pH value in the biopore sheaths compared to the bulk soil. Biopores serve not only as an elongation path for roots, but their sheaths also provide an environment for root activity in the subsoil.


Author(s):  
Aybegün Ton

The aim of present study was to determine the effects of different ethephon doses on grain yield and yield components of two faba bean cultivars. The experiment was established in 2019/2020 and 2020/2021 cropping season at Research Area of Field Crops Department, Agriculture of Faculty, Cukurova University Adana, Turkey. The field experiment was laid out in randomized complete blocks design (RCBD) with three replications on the basis split plot design with cultivars (Luz de Otono and Histal) in main plots and ethephon doses (0, 500, 1000, 1500 g ha-1) in sub plots. Plant height (cm), branches per plant, pods per plant, seeds per plant, seed yield per plant (g), 100 grain weight (g), seed yield (kg ha-1) were investigated. Differences among the cultivars and ethephon applications were significant for seed yield and it varied from 1782 to 3388 kg ha-1 in the mean of the years. Seed yield also decreased with increasing ethephon doses. Seed yield was higher in 2019/2020 (3355 kg ha) than 2020/2021 (1841 kg ha-1) where low rainfed and high temperature. The present results suggested that ethephon applications at inititation of flowering were not useful for seed production of faba bean.


2022 ◽  
Vol 12 ◽  
Author(s):  
Huan Gao ◽  
Gangming Tian ◽  
Muhammad Khashi u Rahman ◽  
Fengzhi Wu

Cover crops can improve soil biological health and alter the composition of soil microbial communities in agricultural systems. However, the effects of diversified cover crops on soil microbial communities in continuous cropping systems are unclear. Here, using different soil biochemical analysis, quantitative PCR and 16S rRNA amplicon sequencing, we investigated the effects of cover crops, alone or in mixture, on soil physicochemical properties in 2019 and 2020, and soil bacterial communities in 2020 in a continuous pepper cropping system. A field trial was established before pepper planting and eight treatments were included: fallow (no cover crop; CK); three sole cover crop treatments: wheat (Triticum aestivum L.; W), faba bean (Vicia faba L.; B), and wild rocket (Diplotaxis tenuifolia; R); and four mixed treatments: wheat + wild rocket (WR), wheat + faba bean (WB), wild rocket + faba bean (RB), and wheat + wild rocket + faba bean (WRB). The pepper yield was increased in the WR and WB in 2019 and 2020, and in the WRB in 2020. Cover crops increased the soil pH, but decreased the concentrations of NH4+ and available phosphorus. Bacterial abundance was increased by cover crop treatments, and community structure was altered in the W, WB, and WRB treatments. Moreover, we found that pH was the key factor associated with the changes in the abundance and structure of the bacterial community. Cover crop treatments altered the bacterial community structure with shifts in the dominant genera, which have plant-growth-promoting and/or pathogen-antagonistic potentials, e.g., increased the abundances of Streptomyces, Arthrobacter, and Bacillus spp. in the W and WRB, and Gaiella spp. in the WB. Overall, we found that cover crops altered the soil physicochemical properties and bacterial community, and these changes varied with species composition of the cover crops, with wheat and its combination with legumes as most effective treatments. These results suggest that the diversification within cover crops could provide better crop yield stimulatory affects by altering soil biochemical environment.


2022 ◽  
Vol 79 (3) ◽  
Author(s):  
Mohamed S. Abbas ◽  
Ramadan A. Badawy ◽  
Hashim M. Abdel-Lattif ◽  
Hattem M. El-Shabrawi

Sign in / Sign up

Export Citation Format

Share Document