microrna target
Recently Published Documents


TOTAL DOCUMENTS

521
(FIVE YEARS 116)

H-INDEX

73
(FIVE YEARS 6)

2022 ◽  
Author(s):  
qiwei yang ◽  
wei yang ◽  
yijun tian ◽  
da xu ◽  
chuanmin chu ◽  
...  

Abstract Backgrounds: The incidence of renal cancer is relatively insidious, and some patients have been metastatic renal cancer at the initial visit. Sunitinib is the first-line systemic therapy for patients with metastatic renal cell carcinoma, however, there is scant analysis of its effect on genes and microRNAs.Methods: In this study, 8 differentially expressed microRNAs and 112 differentially expressed genes were designated by analyzing mRNA and microRNA data sets and weighted correlation network analysis (WGCNA).Results: NIPSNAP1 gene showed the most co-expression with other genes. Through the intersection of the microRNA target gene with our differentially expressed genes, we got 26 genes. KEGG and GO analysis showed that these genes were predominantly concentrated in Pathways in cancer, Sphingolipid metabolism and Glycosaminoglycan degradation. After we set the 26 genes and gene of WGCNA do intersection, received six genes, respectively is NIPSNAP1, SDC4, TBC1D9, NEU1, STK40 and PLAUR. Conclusion: Through subsequent cell, molecular and flow cytometry experiments, we found the PLAUR would play a crucial role in renal cell carcinoma (RCC) resistant to sunitinib, which will be available for new ideas to forecast sunitinib resistance and reverse sunitinib resistance.


Author(s):  
Carlos Garcia-Padilla ◽  
Angel Dueñas ◽  
Diego Franco ◽  
Virginio Garcia-Lopez ◽  
Amelia Aranega ◽  
...  

MicroRNAs have been explored in different organisms and are involved as molecular switches modulating cellular specification and differentiation during the embryonic development, including the cardiovascular system. In this study, we analyze the expression profiles of different microRNAs during early cardiac development. By using whole mount in situ hybridization in developing chick embryos, with microRNA-specific LNA probes, we carried out a detailed study of miR-23b, miR-130a, miR-106a, and miR-100 expression during early stages of embryogenesis (HH3 to HH17). We also correlated those findings with putative microRNA target genes by means of mirWalk and TargetScan analyses. Our results demonstrate a dynamic expression pattern in cardiac precursor cells from the primitive streak to the cardiac looping stages for miR-23b, miR-130a, and miR-106a. Additionally, miR-100 is later detectable during cardiac looping stages (HH15-17). Interestingly, the sinus venosus/inflow tract was shown to be the most representative cardiac area for the convergent expression of the four microRNAs. Through in silico analysis we revealed that distinct Hox family members are predicted to be targeted by the above microRNAs. We also identified expression of several Hox genes in the sinus venosus at stages HH11 and HH15. In addition, by means of gain-of-function experiments both in cardiomyoblasts and sinus venosus explants, we demonstrated the modulation of the different Hox clusters, Hoxa, Hoxb, Hoxc, and Hoxd genes, by these microRNAs. Furthermore, we correlated the negative modulation of several Hox genes, such as Hoxa3, Hoxa4, Hoxa5, Hoxc6, or Hoxd4. Finally, we demonstrated through a dual luciferase assay that Hoxa1 is targeted by miR-130a and Hoxa4 is targeted by both miR-23b and miR-106a, supporting a possible role of these microRNAs in Hox gene modulation during differentiation and compartmentalization of the posterior structures of the developing venous pole of the heart.


2022 ◽  
Vol 23 (2) ◽  
pp. 648
Author(s):  
Yueliang Zhang ◽  
Yiwu Zhang ◽  
Li Luo ◽  
Chunyi Lu ◽  
Weiwen Kong ◽  
...  

Respiratory burst oxidase homologs (Rbohs) are critical enzymes involved in the generation of reactive oxygen species (ROS) that play an important role in plant growth and development as well as various biotic and abiotic stresses in plants. Thus far, there have been few reports on the characterization of the Rboh gene family in Citrus. In this study, seven Rboh genes (CsRbohA~CsRbohG) were identified in the Citrus sinensis genome. The CsRboh proteins were predicted to localize to the cell membrane. Most CsRbohs contained four conserved domains, an EF-hand domain, and a transmembrane region. Phylogenetic analysis demonstrated that the CsRbohs were divided into five groups, suggesting potential distinct functions and evolution. The expression profiles revealed that these seven CsRboh genes displayed tissue-specific expression patterns, and five CsRboh genes were responsive to cold stress. Fourteen putative cis-acting elements related to stress response, hormone response, and development regulation were present within the promoters of CsRboh genes. The in-silico microRNA target transcript analyses indicated that CsRbohE might be targeted by csi-miR164. Further functional and physiological analyses showed that the knockdown of CsRbohD in trifoliate orange impaired resistance to cold stress. As a whole, our results provide valuable information for further functional studies of the CsRboh genes in response to cold stress.


2022 ◽  
Vol 230 ◽  
pp. 113130
Author(s):  
Yuseok Moon ◽  
Tamás Korcsmáros ◽  
Arulkumar Nagappan ◽  
Navin Ray

2021 ◽  
Author(s):  
Juan Manuel Trinidad ◽  
Rafael Sebastian Fort ◽  
Guillermo Trinidad ◽  
Beatriz Garat ◽  
Maria A Duhagon

MicroRNAs are small RNAs that regulate gene expression through complementary base pairing with their target mRNAs. Given the small size of the pairing region and the large number of mRNAs that each microRNA can control, the identification of biologically relevant targets is difficult. Since current knowledge of target recognition and repression has mainly relied on in vitro studies, we sought to determine if the interrogation of gene expression data of unperturbed tissues could yield new insight into these processes. The transcriptome-wide repression at the microRNA-mRNA canonical interaction sites (seed and 3'-supplementary region, identified by sole base complementarity) was calculated as a normalized Spearman correlation (Z-score) between the abundance of the transcripts in the PRAD-TCGA tissues (RNA-seq and small RNA-seq data of 546 samples). Using the repression values obtained we confirmed established properties or microRNA targeting efficacy, such as the preference for gene regions (3'UTR>CDS>5'UTR), the proportionality between repression and seed length (6mer<7mer<8mer) and the contribution to the repression exerted by the supplementary pairing at 13-16nt of the microRNA. Our results suggest that the 7mer-m8 seed could be more repressive than the 7mer-A1, while they have similar efficacy when they interact using the 3'-supplementary pairing. Strikingly, the 6mer+suppl sites yielded normalized Z-score of repression similar to the sole 7mer-m8 or 7mer-A1 seeds, which raise awareness of its potential biological relevance. We then used the approach to further characterize the 3'-supplementary pairing, using 39 microRNAs that hold repressive 3'-supplementary interactions. The analysis of the bridge between seed and 3'-supplementary pairing site confirmed the optimum +1 offset previously evidenced, but higher offsets appear to hold similar repressive strength. In addition, they show a low GC content at position 13-16, and base preferences that allow the selection of a candidate sequence motif. Overall, our study demonstrates that transcriptome-wide analysis of microRNA-mRNA correlations in large, matched RNA-seq and small-RNA-seq data has the power to uncover hints of microRNA targeting determinants operating in the in vivo unperturbed set. Finally, we made available a bioinformatic tool to analyze microRNA-target mRNA interactions using our approach.


2021 ◽  
Vol 20 (11) ◽  
pp. 2293-2298
Author(s):  
Zihan Zheng ◽  
Peng Zhou ◽  
Yangyang Xiao ◽  
Qian Liu ◽  
Tao Wan

Purpose: To explore the effects of miR-541-3P on the expression of heat shock transcription factor 1 (HSF1) in gastric cancer cells (GC).Methods: The MicroRNA Target Prediction Database was used to predict whether miR-541-3p interacts with HSF1. Interaction was assessed by dual-luciferase reporter assays. Furthermore, miR-541-3p mRNA levels in GC cell lines were determined by qRT-PCR. Human GC cell lines MKN45 and NCI-N87 were transfected with miR-541-3p mimic. Cell apoptosis, proliferation, invasion, and migration were evaluated using flow cytometry, apoptosis assays, Edu assays, CCK-8 assays, and transwell assays, respectively. Caspase-3, Bcl-2, and cleaved caspase-3 expression levels were determined by western blot.Results: Expression of miR-541-3p was significantly down-regulated in GC cells. Functionally, miR-541-3p mimic inhibited GC cell proliferation, migration, and invasion and induced apoptosis in vitro (p <0.01). Mechanistically, miR-541-3p interacted with HSF1 and inhibited its expression. Overexpression of HSF1 counteracted the effects of miR-541-3p mimic in GC cells.Conclusion: These results indicate that miR-541-3p suppresses the development of GC by targeting HSF1 and thus, is a possible strategy for for the management of GC.


2021 ◽  
Author(s):  
Banabithi Bose ◽  
Matthew Moravec ◽  
Serdar Bozdag

Abstract DNA copy number aberrated regions in cancer are known to harbor cancer driver genes and the short non-coding RNA molecules, i.e., microRNAs. In this study, we integrated the multi-omics datasets such as copy number aberration, DNA methylation, gene and microRNA expression to identify the signature microRNA-gene associations from frequently aberrated DNA regions across pan-cancer utilizing a LASSO-based regression approach. We studied 7,294 patient samples associated with eighteen different cancer types from The Cancer Genome Atlas (TCGA) database and identified several cancer-specific microRNA-gene interactions enriched in experimentally validated microRNA-target databases. We highlighted several oncogenic and tumor suppressor microRNAs and genes that were common in several cancer types. Our method substantially outperformed the five state-of-art methods in selecting significantly known microRNA-gene interactions in multiple cancer types. Several microRNAs and genes were found to be associated with tumor survival and progression. Selected target genes were found to be significantly enriched in cancer-related pathways, cancer Hallmark and Gene Ontology (GO) terms. Furthermore, subtype-specific potential gene signatures were discovered in multiple cancer types.


2021 ◽  
Vol 11 (12) ◽  
pp. 1275
Author(s):  
Aleksander Turk ◽  
Tanja Kunej ◽  
Borut Peterlin

Alzheimer’s Disease (AD) is a progressive neurodegenerative disorder and the most common cause of dementia; however, early diagnosis of the disease is challenging. Research suggests that biomarkers found in blood, such as microRNAs (miRNA), may be promising for AD diagnostics. Experimental data on miRNA–target interactions (MTI) associated with AD are scattered across databases and publications, thus making the identification of promising miRNA biomarkers for AD difficult. In response to this, a list of experimentally validated AD-associated MTIs was obtained from miRTarBase. Cytoscape was used to create a visual MTI network. STRING software was used for protein–protein interaction analysis and mirPath was used for pathway enrichment analysis. Several targets regulated by multiple miRNAs were identified, including: BACE1, APP, NCSTN, SP1, SIRT1, and PTEN. The miRNA with the highest numbers of interactions in the network were: miR-9, miR-16, miR-34a, miR-106a, miR-107, miR-125b, miR-146, and miR-181c. The analysis revealed seven subnetworks, representing disease modules which have a potential for further biomarker development. The obtained MTI network is not yet complete, and additional studies are needed for the comprehensive understanding of the AD-associated miRNA targetome.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maryam Abedi ◽  
Hamid Reza Marateb ◽  
Mohammad Reza Mohebian ◽  
Seyed Hamid Aghaee-Bakhtiari ◽  
Seyed Mahdi Nassiri ◽  
...  

AbstractDiabetic nephropathy (DN), the leading cause of end-stage renal disease, has become a massive global health burden. Despite considerable efforts, the underlying mechanisms have not yet been comprehensively understood. In this study, a systematic approach was utilized to identify the microRNA signature in DN and to introduce novel drug targets (DTs) in DN. Using microarray profiling followed by qPCR confirmation, 13 and 6 differentially expressed (DE) microRNAs were identified in the kidney cortex and medulla, respectively. The microRNA-target interaction networks for each anatomical compartment were constructed and central nodes were identified. Moreover, enrichment analysis was performed to identify key signaling pathways. To develop a strategy for DT prediction, the human proteome was annotated with 65 biochemical characteristics and 23 network topology parameters. Furthermore, all proteins targeted by at least one FDA-approved drug were identified. Next, mGMDH-AFS, a high-performance machine learning algorithm capable of tolerating massive imbalanced size of the classes, was developed to classify DT and non-DT proteins. The sensitivity, specificity, accuracy, and precision of the proposed method were 90%, 86%, 88%, and 89%, respectively. Moreover, it significantly outperformed the state-of-the-art (P-value ≤ 0.05) and showed very good diagnostic accuracy and high agreement between predicted and observed class labels. The cortex and medulla networks were then analyzed with this validated machine to identify potential DTs. Among the high-rank DT candidates are Egfr, Prkce, clic5, Kit, and Agtr1a which is a current well-known target in DN. In conclusion, a combination of experimental and computational approaches was exploited to provide a holistic insight into the disorder for introducing novel therapeutic targets.


Sign in / Sign up

Export Citation Format

Share Document