scholarly journals Stress-dependent inhibition of cell polarity through unbalancing the GEF/GAP regulation of Cdc42

2021 ◽  
Author(s):  
Clàudia Salat-Canela ◽  
Mercè Carmona ◽  
Rebeca Martín-García ◽  
Pilar Pérez ◽  
José Ayté ◽  
...  

Cdc42 rules cell polarity and growth in fission yeast. It is negatively and positively regulated by GTPase-activating proteins (GAPs) and by Guanine-nucleotide Exchange factors (GEFs), respectively. Active Cdc42-GTP localizes to the poles, where it associates with numerous proteins constituting the polarity module. However, little is known about its down-regulation. We describe here that oxidative stress causes Sty1 kinase-dependent Cdc42 inactivation at cell poles. Both the amount of active Cdc42 at poles and cell length inversely correlate with Sty1 activity, explaining the elongated morphology of Δsty1 cells. We have created stress-blinded cell poles by either eliminating two Cdc42 GAPs or through the constitutive tethering of a GEF to the cell tips, and biochemically demonstrate that Rga3 is a direct substrate of Sty1. We propose that stress-activated Sty1 promotes GTP hydrolysis and prevents GEF activity at the cell tips, thus leading to the inhibition of Cdc42 and polarized growth cessation.

2021 ◽  
Author(s):  
Monika Tucholska

The Fcγ receptor is a cell surface protein essential in the immune response that binds IgG-opsonized particles resulting in phagocytosis. Phagocytosis is a process used to remove pathogens and confine them in a vacuole that will enable their breakdown. The members of the Ras superfamily of small G proteins have been identified in samples where the activated Fcγ receptor complex was captured and analyzed using tandem mass spectrometry. The protein Rap. beloning to the Ras superfamily, guanosine triphosphatases (GTPase) activating proteins (GAPs), which promote the dissociation of GTP, and guanine nucleotide exchange factors (GEFs), that permits the exchange of GDP for GTP, were detected by SEQUEST in RAW 264.7 macrophages and futher analyzed using various methods. In this study, Raps, RasGAPs, and RapGEFs, were observed by tandem mass spectrometry and sequence correlation analysis. The selected isoforms were confirmed by Western blots, live cell confocal microscopy with fluorescent fusion constructs and antibody staining to verify the localization of Ras proetins, specifically Rap1, p120RasGAP and C3G, a RapGEF, to activated Fc reeceptor [sic].


Cancers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1859
Author(s):  
Laura Streit ◽  
Laurent Brunaud ◽  
Nicolas Vitale ◽  
Stéphane Ory ◽  
Stéphane Gasman

Neuroendocrine tumors (NETs) belong to a heterogeneous group of neoplasms arising from hormone secreting cells. These tumors are often associated with a dysfunction of their secretory activity. Neuroendocrine secretion occurs through calcium-regulated exocytosis, a process that is tightly controlled by Rho GTPases family members. In this review, we compiled the numerous mutations and modification of expression levels of Rho GTPases or their regulators (Rho guanine nucleotide-exchange factors and Rho GTPase-activating proteins) that have been identified in NETs. We discussed how they might regulate neuroendocrine secretion.


2002 ◽  
Vol 22 (18) ◽  
pp. 6582-6591 ◽  
Author(s):  
Reina E. Itoh ◽  
Kazuo Kurokawa ◽  
Yusuke Ohba ◽  
Hisayoshi Yoshizaki ◽  
Naoki Mochizuki ◽  
...  

ABSTRACT Rho family G proteins, including Rac and Cdc42, regulate a variety of cellular functions such as morphology, motility, and gene expression. We developed fluorescent resonance energy transfer-based probes which monitored the local balance between the activities of guanine nucleotide exchange factors and GTPase-activating proteins for Rac1 and Cdc42 at the membrane. These probes, named Raichu-Rac and Raichu-Cdc42, consisted of a Cdc42- and Rac-binding domain of Pak, Rac1 or Cdc42, a pair of green fluorescent protein mutants, and a CAAX box of Ki-Ras. With these probes, we video imaged the Rac and Cdc42 activities. In motile HT1080 cells, activities of both Rac and Cdc42 gradually increased toward the leading edge and decreased rapidly when cells changed direction. Under a higher magnification, we observed that Rac activity was highest immediately behind the leading edge, whereas Cdc42 activity was most prominent at the tip of the leading edge. Raichu-Rac and Raichu-Cdc42 were also applied to a rapid and simple assay for the analysis of putative guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) in living cells. Among six putative GEFs and GAPs, we identified KIAA0362/DBS as a GEF for Rac and Cdc42, KIAA1256 as a GEF for Cdc42, KIAA0053 as a GAP for Rac and Cdc42, and KIAA1204 as a GAP for Cdc42. In conclusion, use of these single-molecule probes to determine Rac and Cdc42 activity will accelerate the analysis of the spatiotemporal regulation of Rac and Cdc42 in a living cell.


2021 ◽  
Author(s):  
Monika Tucholska

The Fcγ receptor is a cell surface protein essential in the immune response that binds IgG-opsonized particles resulting in phagocytosis. Phagocytosis is a process used to remove pathogens and confine them in a vacuole that will enable their breakdown. The members of the Ras superfamily of small G proteins have been identified in samples where the activated Fcγ receptor complex was captured and analyzed using tandem mass spectrometry. The protein Rap. beloning to the Ras superfamily, guanosine triphosphatases (GTPase) activating proteins (GAPs), which promote the dissociation of GTP, and guanine nucleotide exchange factors (GEFs), that permits the exchange of GDP for GTP, were detected by SEQUEST in RAW 264.7 macrophages and futher analyzed using various methods. In this study, Raps, RasGAPs, and RapGEFs, were observed by tandem mass spectrometry and sequence correlation analysis. The selected isoforms were confirmed by Western blots, live cell confocal microscopy with fluorescent fusion constructs and antibody staining to verify the localization of Ras proetins, specifically Rap1, p120RasGAP and C3G, a RapGEF, to activated Fc reeceptor [sic].


1996 ◽  
Vol 271 (19) ◽  
pp. 11076-11082 ◽  
Author(s):  
Lawrence A. Quilliam ◽  
Mark M. Hisaka ◽  
Sheng Zhong ◽  
Amy Lowry ◽  
Raymond D. Mosteller ◽  
...  

2006 ◽  
Vol 26 (13) ◽  
pp. 4830-4842 ◽  
Author(s):  
Sonja G. Hunter ◽  
Guanglei Zhuang ◽  
Dana Brantley-Sieders ◽  
Wojciech Swat ◽  
Christopher W. Cowan ◽  
...  

ABSTRACT Angiogenesis, the process by which new blood vessels are formed from preexisting vasculature, is critical for vascular remodeling during development and contributes to the pathogenesis of diseases such as cancer. Prior studies from our laboratory demonstrate that the EphA2 receptor tyrosine kinase is a key regulator of angiogenesis in vivo. The EphA receptor-mediated angiogenic response is dependent on activation of Rho family GTPase Rac1 and is regulated by phosphatidylinositol 3-kinase. Here we report the identification of Vav2 and Vav3 as guanine nucleotide exchange factors (GEFs) that link the EphA2 receptor to Rho family GTPase activation and angiogenesis. Ephrin-A1 stimulation recruits the binding of Vav proteins to the activated EphA2 receptor. The induced association of EphA receptor and Vav proteins modulates the activity of Vav GEFs, leading to activation of Rac1 GTPase. Overexpression of either Vav2 or Vav3 in primary microvascular endothelial cells promotes Rac1 activation, cell migration, and assembly in response to ephrin-A1 stimulation. Conversely, loss of Vav2 and Vav3 GEFs inhibits Rac1 activation and ephrin-A1-induced angiogenic responses both in vitro and in vivo. In addition, embryonic fibroblasts derived from Vav2−/− Vav3−/− mice fail to spread on an ephrin-A1-coated surface and exhibit a significant decrease in the formation of ephrin-A1-induced lamellipodia and filopodia. These findings suggest that Vav GEFs serve as a molecular link between EphA2 receptors and the actin cytoskeleton and provide an important mechanism for EphA2-mediated angiogenesis.


Sign in / Sign up

Export Citation Format

Share Document