stress dependent
Recently Published Documents


TOTAL DOCUMENTS

1657
(FIVE YEARS 480)

H-INDEX

78
(FIVE YEARS 11)

Author(s):  
Pengda Cheng ◽  
Weijun Shen ◽  
Qingyan Xu ◽  
Xiaobing Lu ◽  
Chao Qian ◽  
...  

AbstractUnderstanding the changes of the near-wellbore pore pressure associated with the reservoir depletion is greatly significant for the development of ultra-deep natural gas reservoirs. However, there is still a great challenge for the fluid flow and geomechanics in the reservoir depletion. In this study, a fully coupled model was developed to simulate the near-wellbore and reservoir physics caused by pore pressure in ultra-deep natural gas reservoirs. The stress-dependent porosity and permeability models as well as geomechanics deformation induced by pore pressure were considered in this model, and the COMSOL Multiphysics was used to implement and solve the problem. The numerical model was validated by the reservoir depletion from Dabei gas field in China, and the effects of reservoir properties and production parameters on gas production, near-wellbore pore pressure and permeability evolution were discussed. The results show that the gas production rate increases nonlinearly with the increase in porosity, permeability and Young’s modulus. The lower reservoir porosity will result in the greater near-wellbore pore pressure and the larger rock deformation. The permeability changes have little effect on geomechanics deformation while it affects greatly the gas production rate in the reservoir depletion. With the increase in the gas production rate, the near-wellbore pore pressure and permeability decrease rapidly and tend to balance with time. The reservoir rocks with higher deformation capacity will cause the greater near-wellbore pore pressure.


Solid Earth ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 137-160
Author(s):  
Tiange Xing ◽  
Hamed O. Ghaffari ◽  
Ulrich Mok ◽  
Matej Pec

Abstract. Geological carbon sequestration provides permanent CO2 storage to mitigate the current high concentration of CO2 in the atmosphere. CO2 mineralization in basalts has been proven to be one of the most secure storage options. For successful implementation and future improvements of this technology, the time-dependent deformation behavior of reservoir rocks in the presence of reactive fluids needs to be studied in detail. We conducted load-stepping creep experiments on basalts from the CarbFix site (Iceland) under several pore fluid conditions (dry, H2O saturated and H2O + CO2 saturated) at temperature, T≈80 ∘C and effective pressure, Peff=50 MPa, during which we collected mechanical, acoustic and pore fluid chemistry data. We observed transient creep at stresses as low as 11 % of the failure strength. Acoustic emissions (AEs) correlated strongly with strain accumulation, indicating that the creep deformation was a brittle process in agreement with microstructural observations. The rate and magnitude of AEs were higher in fluid-saturated experiments than in dry conditions. We infer that the predominant mechanism governing creep deformation is time- and stress-dependent subcritical dilatant cracking. Our results suggest that the presence of aqueous fluids exerts first-order control on creep deformation of basaltic rocks, while the composition of the fluids plays only a secondary role under the studied conditions.


Author(s):  
Jiying Fan ◽  
R. Kerry Rowe ◽  
Richard W.I. Brachman

Microstructure showing the involvement of the fine and coarse grains in the soil skeleton is evaluated. Incremental loading tests using a stress-dependent permeameter are conducted on the mixtures of poorly graded sand and nonplastic fines originating from tailings. The results are compared with the published data of various tailings. It is shown that increasing the fines content from 0 to 100%, the involvement of the fine and coarse components of soil skeleton can be classified into four categories: no fines involvement (<10% fines), fines partially involved (10% —35% fines), increasing cushioning effect surrounding the coarse (35% — 40% fines), and constant cushioning effect (> 40% fines). At the same consolidation stress, the void ratio, e, rapidly decreases for fines less than 30%, then almost remains constant between 30% and 50% fines, and gradually increases for fines exceeding 50%. The hydraulic conductivity, k, decreases more than 20-fold as the fines content increases from 12% to 50%, then remains constant. k is proportional to [e3/(1+e)]A and inversely proportional to S2, where A is a factor describing the effect of particle angularity and S is the specific surface. Finally, the influence of fines content on the seepage-induced internal stability is discussed.


2022 ◽  
Author(s):  
Cornelis Adrianus Veeken ◽  
Yousuf Busaidi ◽  
Amira Hajri ◽  
Ahmed Mohammed Hegazy ◽  
Hamyar Riyami ◽  
...  

Abstract PDO operates about 200 deep gas wells in the X field in the Sultanate of Oman, producing commingled from the Barik gas-condensate and Miqrat lean gas reservoir completed by multiple hydraulic fracturing. Their inflow performance relation (IPR) is tracked to diagnose condensate damage, hydraulic fracture cleanup and differential reservoir pressure depletion. The best IPR data is collected through multi-rate production logging but surface production data serves as an alternative. This paper describes the process of deriving IPR's from production logging and surface production data, and then evaluates 20 years of historic IPR data to quantify the impact of condensate damage and condensate cleanup with progressive reservoir pressure depletion, to demonstrate the massive damage and slow cleanup of hydraulic fractures placed in depleted reservoirs, to show how hydraulic fractures facilitate the vertical cross-flow between isolated reservoir intervals, and to highlight that stress-dependent permeability does not play a major role in this field.


2022 ◽  
Author(s):  
Suhita Ray ◽  
Linda Chee ◽  
Yichao Zhou ◽  
Meg A Schaefer ◽  
Michael J Naldrett ◽  
...  

Acute anemia induces rapid expansion of erythroid precursors and accelerated differentiation to replenish erythrocytes. Paracrine signals – involving cooperation between SCF/c-Kit signaling and other signaling inputs – are required for the increased erythroid precursor activity in anemia. Our prior work revealed that the Sterile Alpha Motif (SAM) Domain 14 (Samd14) gene increases the regenerative capacity of the erythroid system and promotes stress-dependent c-Kit signaling. However, the mechanism underlying Samd14’s role in stress erythropoiesis is unknown. We identified a protein-protein interaction between Samd14 and the α- and β heterodimers of the F-actin capping protein (CP) complex. Knockdown of the CP β subunit increased erythroid maturation in ex vivo cultures and decreased colony forming potential of stress erythroid precursors. In a genetic complementation assay for Samd14 activity, our results revealed that the Samd14-CP interaction is a determinant of erythroid precursor cell levels and function. Samd14-CP promotes SCF/c-kit signaling in CD71med spleen erythroid precursors. Given the roles of c-Kit signaling in hematopoiesis and Samd14 in c-Kit pathway activation, this mechanism may have pathological implications in acute/chronic anemia.


2021 ◽  
Author(s):  
Hung-Chuan Pan ◽  
Cheng-Ning Yang ◽  
Wen-Jane Lee ◽  
Jason Sheehan ◽  
Sheng-Mao Wu ◽  
...  

Abstract Background: Activated microglia-mediated neuro-inflammation plays a vital aspect in regulating the micromilieu of the central nervous system. Neuro-inflammation involves distinct alterations of microglial phenotypes, containing nocuous pro-inflammatory (M1) phenotype and neuroprotective anti-inflammatory (M2) phenotype. Currently, there is no effective treatment for modulating such alterations. Little evidence shows that melatonin prevents the detrimental cascade of activated microglia-mediated neuro-inflammation. Methods: The expression levels of M1/M2 marker of primary microglia influenced by Melatonin were detected via qPCR. Functional activities were explored by western blotting, luciferase activity, EMSA, and ChIP assay. Structure interaction was assessed by molecular docking and LIGPLOT analysis. ER stress detection was examined by ultrastructure TEM, calapin activity, and ERSE assay. The neurobehavioral evaluations and immunofluorescence staining in animals were used for investigation of Melatonin on the neuroinflammation in vivo. Results: Melatonin had targeted on Peroxisome Proliferator Activated Receptor Delta (PPARd) activity, boosted LPS-stimulated alterations in polarization from the M1 to the M2 phenotype, and thereby inhibited NFkB–IKKb activation in primary microglia. The PPARd agonist L-165041 or over-expression of PPARd plasmid (ov-PPARd) showed similar results. Molecular docking screening, dynamic simulation approaches, and biological studies of melatonin showed that the activated site was located at PPARd (phospho-Thr256-PPARd). Furthermore, we found that activated microglia had lowered PPARd activity as well as the downstream SIRT1 formation via enhancing ER stress. Melatonin, PPARd agonist and ov-PPARd all effectively reversed the above-mentioned effects. Melatonin blocked ER stress by regulating calapin activity and expression in LPS-activated microglia. Additionally, melatonin or L-165041 ameliorated the neurobehavioral deficits in LPS-aggravated neuroinflammatory mice through blocking microglia activities, and also promoted phenotype changes to M2-predominant microglia. Conclusions Melatonin suppressed neuro-inflammation in vitro and in vivo by tuning microglial activation through the ER stress-dependent PPARd/SIRT1 signaling cascade. We proposed that this treatment strategy is an encouraging pharmacological approach for the remedy of neuro-inflammation associated disorders.


2021 ◽  
Author(s):  
Chunyang Mo ◽  
Jingxin Guo ◽  
Jiachen Qin ◽  
Xiaoying Zhang ◽  
Yuxi Sun ◽  
...  
Keyword(s):  

Geosciences ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 511
Author(s):  
Roger Hu ◽  
Stuart D. C. Walsh

The stability of open-pit brown-coal mines is affected by the manner in which water is transmitted or retained within their slopes. This in turn is a function of the in-situ fracture network at those mines. Fracture networks in real mines exhibit significant degrees of heterogeneity; encompassing a wide range of apertures, inter-fracture separations, and orientations. While each of these factors plays a role in determining fluid movement, over the scale of a mine it is often impractical to precisely measure, let alone simulate, the behaviour of each fracture. Accordingly, effective continuum models capable of representing the bulk effects of the fracture network are needed to understand the movement of fluid within these slopes. This article presents an analysis of the fracture distribution within the slopes of a brown coal mine and outlines a model to capture the effects on the bulk permeability. A stress-dependent effective-fracture-permeability model is introduced that captures the effects of the fracture apertures, spacing, and orientation. We discuss how this model captures the fracture heterogeneity and the effects of changing stress conditions on fluid flow. The fracture network data and the results from the effective permeability model demonstrate that in many cases slope permeability is dominated by highly permeable but low-probability fractures. These results highlight the need for models capable of capturing the effects of heterogeneity and uncertainty on the slope behaviour.


Sign in / Sign up

Export Citation Format

Share Document