scholarly journals Moving bar of light evokes vectorial spatial selectivity in the immobile rat hippocampus

2021 ◽  
Author(s):  
Chinmay Purandare ◽  
Shonali Dhingra ◽  
Rodrigo Rios ◽  
Cliff Vuong ◽  
Thuc To ◽  
...  

Visual cortical neurons encode the position and motion direction of specific stimuli retrospectively, without any locomotion or task demand. Hippocampus, a part of visual system, is hypothesized to require self-motion or cognitive task to generate allocentric spatial selectivity that is scalar, abstract, and prospective. To bridge these seeming disparities, we measured rodent hippocampal selectivity to a moving bar of light in a body-fixed rat. About 70% of dorsal CA1 neurons showed stable activity modulation as a function of the bar angular position, independent of behavior and rewards. A third of tuned cells also encoded the direction of revolution. In other experiments, neurons encoded the distance of the bar, with preference for approaching motion. Collectively, these demonstrate visually evoked vectorial selectivity (VEVS). Unlike place cells, VEVS was retrospective. Changes in the visual stimulus or its trajectory did not cause remapping but only caused gradual changes. Most VEVS-tuned neurons behaved like place cells during spatial exploration and the two selectivities were correlated. Thus, VEVS could form the basic building block of hippocampal activity. When combined with self-motion, reward, or multisensory stimuli, it can generate the complexity of prospective representations including allocentric space, time, and episodes.

eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Daniel Christopher Haggerty ◽  
Daoyun Ji

Visual cues exert a powerful control over hippocampal place cell activities that encode external spaces. The functional interaction of visual cortical neurons and hippocampal place cells during spatial navigation behavior has yet to be elucidated. Here we show that, like hippocampal place cells, many neurons in the primary visual cortex (V1) of freely moving rats selectively fire at specific locations as animals run repeatedly on a track. The V1 location-specific activity leads hippocampal place cell activity both spatially and temporally. The precise activities of individual V1 neurons fluctuate every time the animal travels through the track, in a correlated fashion with those of hippocampal place cells firing at overlapping locations. The results suggest the existence of visual cortical neurons that are functionally coupled with hippocampal place cells for spatial processing during natural behavior. These visual neurons may also participate in the formation and storage of hippocampal-dependent memories.


2013 ◽  
Vol 30 (5-6) ◽  
pp. 315-330 ◽  
Author(s):  
SETH W. EGGER ◽  
KENNETH H. BRITTEN

AbstractMany complex behaviors rely on guidance from sensations. To perform these behaviors, the motor system must decode information relevant to the task from the sensory system. However, identifying the neurons responsible for encoding the appropriate sensory information remains a difficult problem for neurophysiologists. A key step toward identifying candidate systems is finding neurons or groups of neurons capable of representing the stimuli adequately to support behavior. A traditional approach involves quantitatively measuring the performance of single neurons and comparing this to the performance of the animal. One of the strongest pieces of evidence in support of a neuronal population being involved in a behavioral task comes from the signals being sufficient to support behavior. Numerous experiments using perceptual decision tasks show that visual cortical neurons in many areas have this property. However, most visually guided behaviors are not categorical but continuous and dynamic. In this article, we review the concept of sufficiency and the tools used to measure neural and behavioral performance. We show how concepts from information theory can be used to measure the ongoing performance of both neurons and animal behavior. Finally, we apply these tools to dorsal medial superior temporal (MSTd) neurons and demonstrate that these neurons can represent stimuli important to navigation to a distant goal. We find that MSTd neurons represent ongoing steering error in a virtual-reality steering task. Although most individual neurons were insufficient to support the behavior, some very nearly matched the animal’s estimation performance. These results are consistent with many results from perceptual experiments and in line with the predictions of Mountcastle’s “lower envelope principle.”


2021 ◽  
Author(s):  
Emanuela Rizello ◽  
Sean Martin ◽  
Jennifer Rouine ◽  
Charlotte Callaghan ◽  
Shane O'Mara

Place cells are cells exhibiting location-dependent responses; they have mostly been studied in the hippocampus. Place cells have also been reported in the rat claustrum, an underexplored paracortical region with extensive corto-cortical connectivity. It has been hypothesised that claustral neuronal responses are anchored to cortical visual inputs. We show rat claustral place cells remap when visual inputs are eliminated from the environment and that this remapping is NMDA-receptor-dependent. Eliminating visual input enhances delta-band oscillatory activity in the claustrum, without affecting simultaneously-recorded visual cortical activity. We conclude that, like the hippocampus, claustral place field remapping might be mediated by NMDA receptor activity, and is modulated by visual cortical inputs.


2020 ◽  
Author(s):  
Lukas Klimmasch ◽  
Johann Schneider ◽  
Alexander Lelais ◽  
Bertram E. Shi ◽  
Jochen Triesch

AbstractThe development of binocular vision is an active learning process comprising the development of disparity tuned neurons in visual cortex and the establishment of precise vergence control of the eyes. We present a computational model for the learning and self-calibration of active binocular vision based on the Active Efficient Coding framework, an extension of classic efficient coding ideas to active perception. Under normal rearing conditions, the model develops disparity tuned neurons and precise vergence control, allowing it to correctly interpret random dot stereogramms. Under altered rearing conditions modeled after neurophysiological experiments, the model qualitatively reproduces key experimental findings on changes in binocularity and disparity tuning. Furthermore, the model makes testable predictions regarding how altered rearing conditions impede the learning of precise vergence control. Finally, the model predicts a surprising new effect that impaired vergence control affects the statistics of orientation tuning in visual cortical neurons.


2018 ◽  
Vol 115 (7) ◽  
pp. E1637-E1646 ◽  
Author(s):  
Tale L. Bjerknes ◽  
Nenitha C. Dagslott ◽  
Edvard I. Moser ◽  
May-Britt Moser

Place cells in the hippocampus and grid cells in the medial entorhinal cortex rely on self-motion information and path integration for spatially confined firing. Place cells can be observed in young rats as soon as they leave their nest at around 2.5 wk of postnatal life. In contrast, the regularly spaced firing of grid cells develops only after weaning, during the fourth week. In the present study, we sought to determine whether place cells are able to integrate self-motion information before maturation of the grid-cell system. Place cells were recorded on a 200-cm linear track while preweaning, postweaning, and adult rats ran on successive trials from a start wall to a box at the end of a linear track. The position of the start wall was altered in the middle of the trial sequence. When recordings were made in complete darkness, place cells maintained fields at a fixed distance from the start wall regardless of the age of the animal. When lights were on, place fields were determined primarily by external landmarks, except at the very beginning of the track. This shift was observed in both young and adult animals. The results suggest that preweaning rats are able to calculate distances based on information from self-motion before the grid-cell system has matured to its full extent.


2008 ◽  
Vol 100 (3) ◽  
pp. 1476-1487 ◽  
Author(s):  
Bin Zhang ◽  
Earl L. Smith ◽  
Yuzo M. Chino

Vision of newborn infants is limited by immaturities in their visual brain. In adult primates, the transient onset discharges of visual cortical neurons are thought to be intimately involved with capturing the rapid succession of brief images in visual scenes. Here we sought to determine the responsiveness and quality of transient responses in individual neurons of the primary visual cortex (V1) and visual area 2 (V2) of infant monkeys. We show that the transient component of neuronal firing to 640-ms stationary gratings was as robust and as reliable as in adults only 2 wk after birth, whereas the sustained component was more sluggish in infants than in adults. Thus the cortical circuitry supporting onset transient responses is functionally mature near birth, and our findings predict that neonates, known for their “impoverished vision,” are capable of initiating relatively mature fixating eye movements and of performing in detection of simple objects far better than traditionally thought.


2002 ◽  
Vol 22 (24) ◽  
pp. 10519-10523 ◽  
Author(s):  
Nicole C. Rust ◽  
Simon R. Schultz ◽  
J. Anthony Movshon

1984 ◽  
Vol 15 (4) ◽  
pp. 248-255
Author(s):  
N. A. Lazareva ◽  
R. V. Novikova ◽  
A. S. Tikhomirov ◽  
I. A. Shevelev ◽  
G. A. Sharaev

Sign in / Sign up

Export Citation Format

Share Document