Orientation selectivity of visual cortical neurons at different stimulus intensities in cats

1984 ◽  
Vol 15 (4) ◽  
pp. 248-255
Author(s):  
N. A. Lazareva ◽  
R. V. Novikova ◽  
A. S. Tikhomirov ◽  
I. A. Shevelev ◽  
G. A. Sharaev
2011 ◽  
Vol 106 (4) ◽  
pp. 1923-1932 ◽  
Author(s):  
Tomokazu Ohshiro ◽  
Shaista Hussain ◽  
Michael Weliky

Visual cortical neurons are selective for the orientation of lines, and the full development of this selectivity requires natural visual experience after eye opening. Here we examined whether this selectivity develops without seeing lines and contours. Juvenile ferrets were reared in a dark room and visually trained by being shown a movie of flickering, sparse spots. We found that despite the lack of contour visual experience, the cortical neurons of these ferrets developed strong orientation selectivity and exhibited simple-cell receptive fields. This finding suggests that overt contour visual experience is unnecessary for the maturation of orientation selectivity and is inconsistent with the computational models that crucially require the visual inputs of lines and contours for the development of orientation selectivity. We propose that a correlation-based model supplemented with a constraint on synaptic strength dynamics is able to account for our experimental result.


2017 ◽  
Vol 117 (3) ◽  
pp. 910-918 ◽  
Author(s):  
Benjamin Scholl ◽  
Jagruti J. Pattadkal ◽  
Ashlee Rowe ◽  
Nicholas J. Priebe

Mammalian neocortical circuits are functionally organized such that the selectivity of individual neurons systematically shifts across the cortical surface, forming a continuous map. Maps of the sensory space exist in cortex, such as retinotopic maps in the visual system or tonotopic maps in the auditory system, but other functional response properties also may be similarly organized. For example, many carnivores and primates possess a map for orientation selectivity in primary visual cortex (V1), whereas mice, rabbits, and the gray squirrel lack orientation maps. In this report we show that a carnivorous rodent with predatory behaviors, the grasshopper mouse ( Onychomys arenicola), lacks a canonical columnar organization of orientation preference in V1; however, neighboring neurons within 50 μm exhibit related tuning preference. Using a combination of two-photon microscopy and extracellular electrophysiology, we demonstrate that the functional organization of visual cortical neurons in the grasshopper mouse is largely the same as in the C57/BL6 laboratory mouse. We also find similarity in the selectivity for stimulus orientation, direction, and spatial frequency. Our results suggest that the properties of V1 neurons across rodent species are largely conserved. NEW & NOTEWORTHY Carnivores and primates possess a map for orientation selectivity in primary visual cortex (V1), whereas rodents and lagomorphs lack this organization. We examine, for the first time, V1 of a wild carnivorous rodent with predatory behaviors, the grasshopper mouse ( Onychomys arenicola). We demonstrate the cellular organization of V1 in the grasshopper mouse is largely the same as the C57/BL6 laboratory mouse, suggesting that V1 neuron properties across rodent species are largely conserved.


2013 ◽  
Vol 30 (5-6) ◽  
pp. 315-330 ◽  
Author(s):  
SETH W. EGGER ◽  
KENNETH H. BRITTEN

AbstractMany complex behaviors rely on guidance from sensations. To perform these behaviors, the motor system must decode information relevant to the task from the sensory system. However, identifying the neurons responsible for encoding the appropriate sensory information remains a difficult problem for neurophysiologists. A key step toward identifying candidate systems is finding neurons or groups of neurons capable of representing the stimuli adequately to support behavior. A traditional approach involves quantitatively measuring the performance of single neurons and comparing this to the performance of the animal. One of the strongest pieces of evidence in support of a neuronal population being involved in a behavioral task comes from the signals being sufficient to support behavior. Numerous experiments using perceptual decision tasks show that visual cortical neurons in many areas have this property. However, most visually guided behaviors are not categorical but continuous and dynamic. In this article, we review the concept of sufficiency and the tools used to measure neural and behavioral performance. We show how concepts from information theory can be used to measure the ongoing performance of both neurons and animal behavior. Finally, we apply these tools to dorsal medial superior temporal (MSTd) neurons and demonstrate that these neurons can represent stimuli important to navigation to a distant goal. We find that MSTd neurons represent ongoing steering error in a virtual-reality steering task. Although most individual neurons were insufficient to support the behavior, some very nearly matched the animal’s estimation performance. These results are consistent with many results from perceptual experiments and in line with the predictions of Mountcastle’s “lower envelope principle.”


2020 ◽  
Author(s):  
Lukas Klimmasch ◽  
Johann Schneider ◽  
Alexander Lelais ◽  
Bertram E. Shi ◽  
Jochen Triesch

AbstractThe development of binocular vision is an active learning process comprising the development of disparity tuned neurons in visual cortex and the establishment of precise vergence control of the eyes. We present a computational model for the learning and self-calibration of active binocular vision based on the Active Efficient Coding framework, an extension of classic efficient coding ideas to active perception. Under normal rearing conditions, the model develops disparity tuned neurons and precise vergence control, allowing it to correctly interpret random dot stereogramms. Under altered rearing conditions modeled after neurophysiological experiments, the model qualitatively reproduces key experimental findings on changes in binocularity and disparity tuning. Furthermore, the model makes testable predictions regarding how altered rearing conditions impede the learning of precise vergence control. Finally, the model predicts a surprising new effect that impaired vergence control affects the statistics of orientation tuning in visual cortical neurons.


2008 ◽  
Vol 100 (3) ◽  
pp. 1476-1487 ◽  
Author(s):  
Bin Zhang ◽  
Earl L. Smith ◽  
Yuzo M. Chino

Vision of newborn infants is limited by immaturities in their visual brain. In adult primates, the transient onset discharges of visual cortical neurons are thought to be intimately involved with capturing the rapid succession of brief images in visual scenes. Here we sought to determine the responsiveness and quality of transient responses in individual neurons of the primary visual cortex (V1) and visual area 2 (V2) of infant monkeys. We show that the transient component of neuronal firing to 640-ms stationary gratings was as robust and as reliable as in adults only 2 wk after birth, whereas the sustained component was more sluggish in infants than in adults. Thus the cortical circuitry supporting onset transient responses is functionally mature near birth, and our findings predict that neonates, known for their “impoverished vision,” are capable of initiating relatively mature fixating eye movements and of performing in detection of simple objects far better than traditionally thought.


2002 ◽  
Vol 22 (24) ◽  
pp. 10519-10523 ◽  
Author(s):  
Nicole C. Rust ◽  
Simon R. Schultz ◽  
J. Anthony Movshon

1984 ◽  
Vol 15 (3) ◽  
pp. 152-159
Author(s):  
I. A. Shevelev ◽  
A. S. Tikhomirov

Sign in / Sign up

Export Citation Format

Share Document