scholarly journals Voluntary control of illusory contour formation

2017 ◽  
Author(s):  
William J Harrison ◽  
Reuben Rideaux

ABSTRACTThe extent to which visual inference is shaped by attentional goals is unclear. Voluntary attention may simply modulate the priority with which information is accessed by higher cognitive functions involved in perceptual decision making. Alternatively, voluntary attention may influence fundamental visual processes, such as those involved in segmenting an incoming retinal signal into a structured scene of coherent objects, thereby determining perceptual organisation. Here we tested whether the segmentation and integration of visual form can be determined by an observer’s goals by exploiting a novel variant of the classical Kanizsa figure. We generated predictions about the influence of attention with a machine classifier, and tested these predictions with a psychophysical response classification technique. Despite seeing the same image on each trial, observers’ perception of illusory spatial structure depended on their attentional goals. These attention-contingent illusory contours directly conflicted with equally plausible visual form implied by the geometry of the stimulus, revealing that attentional selection can determine the perceived layout of a fragmented scene. Attentional goals, therefore, not only select pre-computed features or regions of space for prioritised processing, but, under certain conditions, also greatly influence perceptual organisation and thus visual appearance.SIGNIFICANCE STATEMENTThe extent to which higher cognitive functions can influence perceptual organisation is debated. The role of voluntary spatial attention, the ability to focus on only some parts of a scene, has been particularly controversial among neuroscientists and psychologists who aim to uncover the basic neural computations involved in grouping image features into coherent objects. To address this issue, we repeatedly presented the same novel ambiguous image to observers and changed their attentional goals by having them make fine spatial judgements about only some elements of the image. We found that observers’ attentional goals determine the perceived organisation of multiple illusory shapes. We thus reveal that voluntary spatial attention can control the fundamental processes that determine perceptual organisation.

2018 ◽  
Vol 119 (2) ◽  
pp. 631-640 ◽  
Author(s):  
Leyla Isik ◽  
Andrea Tacchetti ◽  
Tomaso Poggio

Humans can effortlessly recognize others’ actions in the presence of complex transformations, such as changes in viewpoint. Several studies have located the regions in the brain involved in invariant action recognition; however, the underlying neural computations remain poorly understood. We use magnetoencephalography decoding and a data set of well-controlled, naturalistic videos of five actions (run, walk, jump, eat, drink) performed by different actors at different viewpoints to study the computational steps used to recognize actions across complex transformations. In particular, we ask when the brain discriminates between different actions, and when it does so in a manner that is invariant to changes in 3D viewpoint. We measure the latency difference between invariant and noninvariant action decoding when subjects view full videos as well as form-depleted and motion-depleted stimuli. We were unable to detect a difference in decoding latency or temporal profile between invariant and noninvariant action recognition in full videos. However, when either form or motion information is removed from the stimulus set, we observe a decrease and delay in invariant action decoding. Our results suggest that the brain recognizes actions and builds invariance to complex transformations at the same time and that both form and motion information are crucial for fast, invariant action recognition. NEW & NOTEWORTHY The human brain can quickly recognize actions despite transformations that change their visual appearance. We use neural timing data to uncover the computations underlying this ability. We find that within 200 ms action can be read out of magnetoencephalography data and that this representation is invariant to changes in viewpoint. We find form and motion are needed for this fast action decoding, suggesting that the brain quickly integrates complex spatiotemporal features to form invariant action representations.


Author(s):  
Simone Rossi ◽  
Stefano F. Cappa ◽  
Paolo Maria Rossini

Transcranial magnetic stimulation (TMS) is a sophisticated approach for interfering with human memory and reasoning due to its ability to transiently interfere with the functions of the specialized cortical network, especially when applied as repetitive (r)TMS. This article reviews TMS studies dealing with short-term retention, working memory, and with the episodic component of declarative memory. It also considers certain aspects of semantic memory and nonverbal reasoning. Furthermore, it discusses methodological considerations about the experimental designs, which can be used for the investigation of human cognitive functions. This article emphasizes the fact that higher cognitive functions provide an example as to how underlying physiological mechanisms cannot be fully disclosed by investigations based on a single technique. Studies to develop a true multimodal approach are being undertaken. In this light, behavioural interference studies will gain new power in combination with disruptive and correlational methodologies, establishing causality in a more sophisticated manner.


Sign in / Sign up

Export Citation Format

Share Document