neural computations
Recently Published Documents


TOTAL DOCUMENTS

245
(FIVE YEARS 104)

H-INDEX

24
(FIVE YEARS 6)

Neuroforum ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jan H. Kirchner ◽  
Julijana Gjorgjieva

Abstract Single neurons in the brain exhibit astounding computational capabilities, which gradually emerge throughout development and enable them to become integrated into complex neural circuits. These capabilities derive in part from the precise arrangement of synaptic inputs on the neurons’ dendrites. While the full computational benefits of this arrangement are still unknown, a picture emerges in which synapses organize according to their functional properties across multiple spatial scales. In particular, on the local scale (tens of microns), excitatory synaptic inputs tend to form clusters according to their functional similarity, whereas on the scale of individual dendrites or the entire tree, synaptic inputs exhibit dendritic maps where excitatory synapse function varies smoothly with location on the tree. The development of this organization is supported by inhibitory synapses, which are carefully interleaved with excitatory synapses and can flexibly modulate activity and plasticity of excitatory synapses. Here, we summarize recent experimental and theoretical research on the developmental emergence of this synaptic organization and its impact on neural computations.


2021 ◽  
Author(s):  
Sunandha Srikanth ◽  
Dylan Le ◽  
Yudi Hu ◽  
Jill K Leutgeb ◽  
Stefan Leutgeb

Oscillatory activity is thought to coordinate neural computations across brain regions, and theta oscillations are critical for learning and memory. Because the frequency of respiratory-related oscillations (RROs) in rodents can overlap with the frequency of theta in the prefrontal cortex (PFC) and the hippocampus, we asked whether odor-cued working memory may be supported by coupling between these two oscillations. We first confirmed that RROs are propagated to the hippocampus and PFC and that RRO frequency overlaps with canonical theta frequency. However, we found low coherence between RROs and local theta oscillations in the hippocampus-PFC network when the two types of oscillations overlapped in frequency. This effect was observed during all behavioral phases including during movement and while odors were actively sampled when stationary. Despite the similarity in frequency, RROs and theta oscillations therefore appear to be limited to supporting computation in distinct networks, which suggests that sustained long-range coordination between oscillation patterns that depend on separate pacemakers is not necessary to support at least one type of working memory.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Minkang Kim ◽  
Jean Decety ◽  
Ling Wu ◽  
Soohyun Baek ◽  
Derek Sankey

AbstractOne means by which humans maintain social cooperation is through intervention in third-party transgressions, a behaviour observable from the early years of development. While it has been argued that pre-school age children’s intervention behaviour is driven by normative understandings, there is scepticism regarding this claim. There is also little consensus regarding the underlying mechanisms and motives that initially drive intervention behaviours in pre-school children. To elucidate the neural computations of moral norm violation associated with young children’s intervention into third-party transgression, forty-seven preschoolers (average age 53.92 months) participated in a study comprising of electroencephalographic (EEG) measurements, a live interaction experiment, and a parent survey about moral values. This study provides data indicating that early implicit evaluations, rather than late deliberative processes, are implicated in a child’s spontaneous intervention into third-party harm. Moreover, our findings suggest that parents’ values about justice influence their children’s early neural responses to third-party harm and their overt costly intervention behaviour.


Neuron ◽  
2021 ◽  
Author(s):  
Nishal P. Shah ◽  
Nora Brackbill ◽  
Ryan Samarakoon ◽  
Colleen Rhoades ◽  
Alexandra Kling ◽  
...  

2021 ◽  
Vol 118 (46) ◽  
pp. e2108713118
Author(s):  
Marco Aqil ◽  
Tomas Knapen ◽  
Serge O. Dumoulin

Neural processing is hypothesized to apply the same mathematical operations in a variety of contexts, implementing so-called canonical neural computations. Divisive normalization (DN) is considered a prime candidate for a canonical computation. Here, we propose a population receptive field (pRF) model based on DN and evaluate it using ultra-high-field functional MRI (fMRI). The DN model parsimoniously captures seemingly disparate response signatures with a single computation, superseding existing pRF models in both performance and biological plausibility. We observe systematic variations in specific DN model parameters across the visual hierarchy and show how they relate to differences in response modulation and visuospatial information integration. The DN model delivers a unifying framework for visuospatial responses throughout the human visual hierarchy and provides insights into its underlying information-encoding computations. These findings extend the role of DN as a canonical computation to neuronal populations throughout the human visual hierarchy.


2021 ◽  
Vol 118 (46) ◽  
pp. e2108959118
Author(s):  
Alexander A. Aabedi ◽  
Benjamin Lipkin ◽  
Jasleen Kaur ◽  
Sofia Kakaizada ◽  
Claudia Valdivia ◽  
...  

Recent developments in the biology of malignant gliomas have demonstrated that glioma cells interact with neurons through both paracrine signaling and electrochemical synapses. Glioma–neuron interactions consequently modulate the excitability of local neuronal circuits, and it is unclear the extent to which glioma-infiltrated cortex can meaningfully participate in neural computations. For example, gliomas may result in a local disorganization of activity that impedes the transient synchronization of neural oscillations. Alternatively, glioma-infiltrated cortex may retain the ability to engage in synchronized activity in a manner similar to normal-appearing cortex but exhibit other altered spatiotemporal patterns of activity with subsequent impact on cognitive processing. Here, we use subdural electrocorticography to sample both normal-appearing and glioma-infiltrated cortex during speech. We find that glioma-infiltrated cortex engages in synchronous activity during task performance in a manner similar to normal-appearing cortex but recruits a diffuse spatial network. On a temporal scale, we show that signals from glioma-infiltrated cortex have decreased entropy, which may affect its ability to encode information during nuanced tasks such as production of monosyllabic versus polysyllabic words. Furthermore, we show that temporal decoding strategies for distinguishing monosyllabic from polysyllabic words were feasible for signals arising from normal-appearing cortex but not from glioma-infiltrated cortex. These findings inform our understanding of cognitive processing in chronic disease states and have implications for neuromodulation and prosthetics in patients with malignant gliomas.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi212-vi212
Author(s):  
alexander Aabedi ◽  
Benjamin Lipkin ◽  
Jasleen Kaur ◽  
Sofia Kakaizada ◽  
Jacob Young ◽  
...  

Abstract INTRODUCTION Recent developments in the biology of malignant gliomas have demonstrated that glioma cells interact with neurons through both paracrine signaling and electrochemical synapses. Glioma-neuron interactions consequently modulate the excitability of local neuronal circuits, and it is unclear the extent to which glioma-infiltrated cortex can meaningfully participate in neural computations. For example, gliomas may result in a local disorganization of activity that impedes the transient synchronization of neural oscillations. Alternatively, glioma-infiltrated cortex may retain the ability to engage in synchronized activity, in a manner similar to normal-appearing cortex, but exhibit other altered spatiotemporal patterns of activity with subsequent impact on cognitive processing. METHODS Here, we acquired invasive electrophysiologic recordings to sample both normal-appearing and glioma-infiltrated cortex during speech initiation in order to measure language task-related circuit dynamics of IDH-wild-type glioblastoma patients. We then applied an information theoretical framework to directly compare the encoding capacity and decodability of signals arising from these regions. RESULTS We find that glioma-infiltrated cortex engages in synchronous activity during task performance in a manner similar to normal-appearing cortex, but recruits a diffuse spatial network. On a temporal scale, we show that glioma-infiltrated cortex has lower capacity for information encoding when performing nuanced tasks such as speech production of monosyllabic versus polysyllabic words. As a result, temporal decoding strategies for distinguishing monosyllabic from polysyllabic words were feasible for signals arising from normal-appearing cortex, but not from glioma-infiltrated cortex. CONCLUSION These findings inform our understanding of cognitive processing in patients with malignant gliomas and have implications for patient survival, neuromodulation, and prosthetics in patients with malignant gliomas.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Li Zheng ◽  
Zhiyao Gao ◽  
Andrew S. McAvan ◽  
Eve A. Isham ◽  
Arne D. Ekstrom

AbstractWhen we remember a city that we have visited, we retrieve places related to finding our goal but also non-target locations within this environment. Yet, understanding how the human brain implements the neural computations underlying holistic retrieval remains unsolved, particularly for shared aspects of environments. Here, human participants learned and retrieved details from three partially overlapping environments while undergoing high-resolution functional magnetic resonance imaging (fMRI). Our findings show reinstatement of stores even when they are not related to a specific trial probe, providing evidence for holistic environmental retrieval. For stores shared between cities, we find evidence for pattern separation (representational orthogonalization) in hippocampal subfield CA2/3/DG and repulsion in CA1 (differentiation beyond orthogonalization). Additionally, our findings demonstrate that medial prefrontal cortex (mPFC) stores representations of the common spatial structure, termed schema, across environments. Together, our findings suggest how unique and common elements of multiple spatial environments are accessed computationally and neurally.


2021 ◽  
Author(s):  
Johannes Bill ◽  
Samuel J Gershman ◽  
Jan Drugowitsch

Identifying the structure of motion relations in the environment is critical for navigation, tracking, prediction, and pursuit. Yet, little is known about the mental and neural computations that allow the visual system to infer this structure online from a volatile stream of visual information. We propose online hierarchical Bayesian inference as a principled solution for how the brain might solve this complex perceptual task. We derive an online Expectation-Maximization algorithm that explains human percepts qualitatively and quantitatively for a diverse set of stimuli, covering classical psychophysics experiments, ambiguous motion scenes, and illusory motion displays. We thereby identify normative explanations for the origin of human motion structure perception and make testable predictions for new psychophysics experiments. The algorithm furthermore affords a neural network implementation which shares properties with motion-sensitive cortical areas and motivates a novel class of experiments to reveal the neural representations of latent structure.


2021 ◽  
Author(s):  
Kenneth W Latimer ◽  
David J Freedman

Neurons in parietal cortex exhibit task-related activity during decision-making tasks. However, it remains unclear how long-term training to perform different tasks over months or even years shapes neural computations and representations. We examine lateral intraparietal area (LIP) responses during a visual motion delayed-match-to-category (DMC) task. We consider two pairs of monkeys with different training histories: one trained only on the DMC task, and another first trained to perform fine motion-direction discrimination. We introduce generalized multilinear models to quantify low-dimensional, task-relevant components in population activity. During the DMC task, we found stronger cosine-like motion-direction tuning in the pretrained monkeys than in the DMC-only monkeys, and that the pretrained monkeys' performance depended more heavily on sample-test stimulus similarity. These results suggest that sensory representations in LIP depend on the sequence of tasks that the animals have learned, underscoring the importance of training history in studies with complex behavioral tasks.


Sign in / Sign up

Export Citation Format

Share Document