scholarly journals Calcium-activated chloride channels clamp odor-evoked spike activity in olfactory receptor neurons

2018 ◽  
Author(s):  
Joseph D. Zak ◽  
Julien Grimaud ◽  
Rong-Chang Li ◽  
Chih-Chun Lin ◽  
Venkatesh N. Murthy

AbstractThe calcium-activated chloride channel anoctamin-2 (Ano2) is thought to amplify transduction currents in ORNs, a hypothesis supported by previous studies in dissociated neurons from Ano2-/- mice. Paradoxically, despite a reduction in transduction currents in Ano2-/- ORNs, their spike output for odor stimuli may be higher. We examined the role of Ano2 in ORNs in their native environment in freely breathing mice by imaging activity in ORN axons as they arrive in the olfactory bulb glomeruli. Odor-evoked responses in ORN axons of Ano2-/- mice were consistently larger for a variety of odorants and concentrations. In an open arena, Ano2-/- mice took longer to approach a localized odor source than wild-type mice, revealing clear olfactory behavioral deficits. Our studies provide the first in vivo evidence toward an alternative role for Ano2 in the olfactory transduction cascade, where it may serve as a feedback mechanism to clamp ORN spike output.

1997 ◽  
Vol 77 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Jiesheng Kang ◽  
John Caprio

Kang, Jiesheng and John Caprio. In vivo response of single olfactory receptor neurons of channel catfish to binary mixtures of amino acids. J. Neurophysiol. 77: 1–8, 1997. For the first time in any vertebrate, in vivo responses of single olfactory receptor neurons to odorant mixtures were studied quantitatively. Extracellular electrophysiological response of 54 single olfactory receptor neurons from 23 channel catfish, Ictalurus punctatus, to binary mixtures of amino acids and to their components were recorded simultaneously with the electroolfactogram (EOG). For 57% (73 of 128) of the tests, no significant change (N) from spontaneous activity occurred. Responses to the remaining 55 tests of binary mixtures were excitatory (E; 13%) or suppressive (S; 30%). No response type was associated with any specific mixture across the neurons sampled. Eighty-six percent of the responses of catfish olfactory receptor neurons to binary mixtures were classifed similar to at least one of the component responses, a percentage comparable (i.e., 89%) with that observed for single olfactory bulb neurons in the same species to equivalent binary mixtures. The responses of single olfactory receptor neurons to component-similar binary mixtures (i.e., component responses were both E, both S, and both N, respectively) were generally (80% of 59 tests) classified similar to the responses to the components. For E+N and S+N binary mixtures, the N component often (66% of 58 tests) reduced or concealed (i.e., “masked”) the excitatory and suppressive responses, respectively. For the majority (6 of 11 tests) of E+S binary mixtures, null activity resulted. Responses to the remaining five tests were either excitatory ( n = 3) or suppressive ( n = 2).


2003 ◽  
Vol 18 (5) ◽  
pp. 1135-1154 ◽  
Author(s):  
Jean-Pierre Rospars ◽  
Petr Lansky ◽  
Andre Duchamp ◽  
Patricia Duchamp-Viret

2017 ◽  
Author(s):  
Gautam Reddy ◽  
Joseph Zak ◽  
Massimo Vergassola ◽  
Venkatesh N. Murthy

AbstractNatural environments feature mixtures of odorants of diverse quantities, qualities and complexities. Olfactory receptor neurons (ORNs) are the first layer in the sensory pathway and transmit the olfactory signal to higher regions of the brain. Yet, the response of ORNs to mixtures is strongly non-additive, and exhibits antagonistic interactions among odorants. Here, we model the processing of mixtures by mammalian ORNs, focusing on the role of inhibitory mechanisms. Theoretically predicted response curves capture experimentally determined glomerular responses imaged by a calcium indicator expressed in ORNs of live, breathing mice. Antagonism leads to an effective “normalization” of the ensemble glomerular response, which arises from a novel mechanism involving the distinct statistical properties of receptor binding and activation, without any recurrent neuronal circuitry. Normalization allows our encoding model to outperform noninteracting models in odor discrimination tasks, and to explain several psychophysical experiments in humans.


1995 ◽  
Vol 73 (1) ◽  
pp. 172-177 ◽  
Author(s):  
J. Kang ◽  
J. Caprio

1. We report for the first time in any teleost, a quantitative in vivo study of recordings from single olfactory receptor neurons (ORNs) in the channel catfish, Ictalurus punctatus, with odorant stimuli. 2. Responses of 69 spontaneously active single ORNs were recorded simultaneously with the electroolfactogram (EOG). Recording times ranged from 10 to 72 min per receptor cell with an average of 24 +/- 15 (SD) min/cell. The averaged spontaneous frequency ranged from < 1 to 12 action potentials/s with a mean frequency of 4.7 +/- 2.5 action potentials/s. 3. Catfish ORNs responded to the odorant stimuli (amino acids, bile salts, and ATP) with either an excitation or suppression of the background neural activity. Suppressive responses were encountered more frequently than excitatory responses, suggesting that suppressive responses also play an important role in olfactory coding. 4. Excitatory and suppressive responses to the different odorants were elicited from the same ORN, suggesting that different olfactory receptor molecules and different transduction pathways exist in the same ORN.


2017 ◽  
Author(s):  
Vincent Jacob ◽  
Christelle Monsempès ◽  
Jean-Pierre Rospars ◽  
Jean-Baptiste Masson ◽  
Philippe Lucas

AbstractLong-distance olfactory search behaviors depend on odor detection dynamics. Due to turbulence, olfactory signals travel as bursts of variable concentration and spacing and are characterized by long-tail distributions of odor/no-odor events, challenging the computing capacities of olfactory systems. How animals encode complex olfactory scenes to track the plume far from the source remains unclear. Here we focus on the coding of the plume temporal dynamics in moths. We compare responses of olfactory receptor neurons (ORNs) and antennal lobe projection neurons (PNs) to sequences of pheromone stimuli either with white-noise patterns or with realistic turbulent temporal structures simulating a large range of distances (8 to 64 m) from the odor source. For the first time, we analyze what information is extracted by the olfactory system at large distances from the source. Neuronal responses are analyzed using linear–nonlinear models fitted with white-noise stimuli and used for predicting responses to turbulent stimuli. We found that neuronal firing rate is less correlated with the dynamic odor time course when distance to the source increases because of improper coding during long odor and no-odor events that characterize large distances. Rapid adaptation during long puffs does not preclude however the detection of puff transitions in PNs. Individual PNs but not individual ORNs encode the onset and offset of odor puffs for any temporal structure of stimuli. A higher spontaneous firing rate coupled to an inhibition phase at the end of PN responses contributes to this coding property. This allows PNs to decode the temporal structure of the odor plume at any distance to the source, an essential piece of information moths can use in their tracking behavior.Author SummaryLong-distance olfactory search is a difficult task because atmospheric turbulence erases global gradients and makes the plume discontinuous. The dynamics of odor detections is the sole information about the position of the source. Male moths successfully track female pheromone plumes at large distances. Here we show that the moth olfactory system encodes olfactory scenes simulating variable distances from the odor source by characterizing puff onsets and offsets. A single projection neuron is sufficient to provide an accurate representation of the dynamic pheromone time course at any distance to the source while this information seems to be encoded at the population level in olfactory receptor neurons.


2008 ◽  
Vol 99 (2) ◽  
pp. 734-746 ◽  
Author(s):  
Glenn C. Turner ◽  
Maxim Bazhenov ◽  
Gilles Laurent

Learning and memory has been studied extensively in Drosophila using behavioral, molecular, and genetic approaches. These studies have identified the mushroom body as essential for the formation and retrieval of olfactory memories. We investigated odor responses of the principal neurons of the mushroom body, the Kenyon cells (KCs), in Drosophila using whole cell recordings in vivo. KC responses to odors were highly selective and, thus sparse, compared with those of their direct inputs, the antennal lobe projection neurons (PNs). We examined the mechanisms that might underlie this transformation and identified at least three contributing factors: excitatory synaptic potentials (from PNs) decay rapidly, curtailing temporal integration, PN convergence onto individual KCs is low (∼10 PNs per KC on average), and KC firing thresholds are high. Sparse activity is thought to be useful in structures involved in memory in part because sparseness tends to reduce representation overlaps. By comparing activity patterns evoked by the same odors across olfactory receptor neurons and across KCs, we show that representations of different odors do indeed become less correlated as they progress through the olfactory system.


Sign in / Sign up

Export Citation Format

Share Document