A model of the role of adaptation and disadaptation in olfactory receptor neurons: implications for the coding of temporal and intensity patterns in odor signals

1994 ◽  
Vol 19 (1) ◽  
pp. 71-86 ◽  
Author(s):  
Paul A. Moore
2017 ◽  
Author(s):  
Gautam Reddy ◽  
Joseph Zak ◽  
Massimo Vergassola ◽  
Venkatesh N. Murthy

AbstractNatural environments feature mixtures of odorants of diverse quantities, qualities and complexities. Olfactory receptor neurons (ORNs) are the first layer in the sensory pathway and transmit the olfactory signal to higher regions of the brain. Yet, the response of ORNs to mixtures is strongly non-additive, and exhibits antagonistic interactions among odorants. Here, we model the processing of mixtures by mammalian ORNs, focusing on the role of inhibitory mechanisms. Theoretically predicted response curves capture experimentally determined glomerular responses imaged by a calcium indicator expressed in ORNs of live, breathing mice. Antagonism leads to an effective “normalization” of the ensemble glomerular response, which arises from a novel mechanism involving the distinct statistical properties of receptor binding and activation, without any recurrent neuronal circuitry. Normalization allows our encoding model to outperform noninteracting models in odor discrimination tasks, and to explain several psychophysical experiments in humans.


2018 ◽  
Author(s):  
Joseph D. Zak ◽  
Julien Grimaud ◽  
Rong-Chang Li ◽  
Chih-Chun Lin ◽  
Venkatesh N. Murthy

AbstractThe calcium-activated chloride channel anoctamin-2 (Ano2) is thought to amplify transduction currents in ORNs, a hypothesis supported by previous studies in dissociated neurons from Ano2-/- mice. Paradoxically, despite a reduction in transduction currents in Ano2-/- ORNs, their spike output for odor stimuli may be higher. We examined the role of Ano2 in ORNs in their native environment in freely breathing mice by imaging activity in ORN axons as they arrive in the olfactory bulb glomeruli. Odor-evoked responses in ORN axons of Ano2-/- mice were consistently larger for a variety of odorants and concentrations. In an open arena, Ano2-/- mice took longer to approach a localized odor source than wild-type mice, revealing clear olfactory behavioral deficits. Our studies provide the first in vivo evidence toward an alternative role for Ano2 in the olfactory transduction cascade, where it may serve as a feedback mechanism to clamp ORN spike output.


2009 ◽  
Vol 190 (1) ◽  
pp. 66-73 ◽  
Author(s):  
Benjamin B. Tournier ◽  
Sandrine Frelon ◽  
Elie Tourlonias ◽  
Laurence Agez ◽  
Olivia Delissen ◽  
...  

1999 ◽  
Vol 85 (1-2) ◽  
pp. 103-110 ◽  
Author(s):  
Kaori Aoki ◽  
Yoko Nakahara ◽  
Shumpei Yamada ◽  
Kazuhiro Eto

1998 ◽  
Vol 79 (3) ◽  
pp. 1349-1359 ◽  
Author(s):  
Aslbek B. Zhainazarov ◽  
Richard E. Doolin ◽  
Barry W. Ache

Zhainazarov, Aslbek B., Richard E. Doolin, and Barry W. Ache. Sodium-gated cation channel implicated in the activation of lobster olfactory receptor neurons. J. Neurophysiol. 79: 1349–1359, 1998. The role of Na+-activated channels in cellular function, if any, is still elusive. We have attempted to implicate a Na+-activated nonselective cation channel in the activation of lobster olfactory receptor neurons. We show that a Na+-activated channel occurs in the odor-detecting outer dendrites. With the use of pharmacological blockers of the channel together with ion substitution, we show that a substantial part of the odor-evoked depolarization in these cells can be ascribed to a Na+-activated conductance. We hypothesize, therefore, that the Na+-activated channel amplifies the receptor current as a result of being secondarily activated by the primary odor transduction pathway.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Gautam Reddy ◽  
Joseph D Zak ◽  
Massimo Vergassola ◽  
Venkatesh N Murthy

Natural environments feature mixtures of odorants of diverse quantities, qualities and complexities. Olfactory receptor neurons (ORNs) are the first layer in the sensory pathway and transmit the olfactory signal to higher regions of the brain. Yet, the response of ORNs to mixtures is strongly non-additive, and exhibits antagonistic interactions among odorants. Here, we model the processing of mixtures by mammalian ORNs, focusing on the role of inhibitory mechanisms. We show how antagonism leads to an effective ‘normalization’ of the ensemble ORN response, that is, the distribution of responses of the ORN population induced by any mixture is largely independent of the number of components in the mixture. This property arises from a novel mechanism involving the distinct statistical properties of receptor binding and activation, without any recurrent neuronal circuitry. Normalization allows our encoding model to outperform non-interacting models in odor discrimination tasks, leads to experimentally testable predictions and explains several psychophysical experiments in humans.


2021 ◽  
Vol 15 ◽  
Author(s):  
Alina Vulpe ◽  
Karen Menuz

Two large families of olfactory receptors, the Odorant Receptors (ORs) and Ionotropic Receptors (IRs), mediate responses to most odors in the insect olfactory system. Individual odorant binding “tuning” OrX receptors are expressed by olfactory neurons in basiconic and trichoid sensilla and require the co-receptor Orco. The situation for IRs is more complex. Different tuning IrX receptors are expressed by olfactory neurons in coeloconic sensilla and rely on either the Ir25a or Ir8a co-receptors; some evidence suggests that Ir76b may also act as a co-receptor, but its function has not been systematically examined. Surprisingly, recent data indicate that nearly all coeloconic olfactory neurons co-express Ir25a, Ir8a, and Ir76b. Here, we demonstrate that Ir76b and Ir25a function together in all amine-sensing olfactory receptor neurons. In most neurons, loss of either co-receptor abolishes amine responses. In contrast, amine responses persist in the absence of Ir76b or Ir25a in ac1 sensilla but are lost in a double mutant. We show that responses mediated by acid-sensing neurons do not require Ir76b, despite their expression of this co-receptor. Our study also demonstrates that one population of coeloconic olfactory neurons exhibits Ir76b/Ir25a-dependent and Orco-dependent responses to distinct odorants. Together, our data establish the role of Ir76b as a bona fide co-receptor, which acts in partnership with Ir25a. Given that these co-receptors are among the most highly conserved olfactory receptors and are often co-expressed in chemosensory neurons, our data suggest Ir76b and Ir25a also work in tandem in other insects.


Sign in / Sign up

Export Citation Format

Share Document