scholarly journals Parkour LIMS: facilitating high-quality sample preparation in next generation sequencing

2018 ◽  
Author(s):  
E. Anatskiy ◽  
D.P. Ryan ◽  
B. Grüning ◽  
L. Arrigoni ◽  
T. Manke ◽  
...  

AbstractSummaryThis paper presents Parkour, a software package for sample processing and quality management of next generation sequencing data and samples. Starting with user requests, Parkour allows tracking and assessing samples based on predefined quality criteria through different stages of the sample preparation workflow. Ideally suited for academic core laboratories, the software aims to maximize efficiency and reduce turnaround time by intelligent sample grouping and a clear assignment of staff to work units. Tools for automated invoicing, interactive statistics on facility usage and simple report generation minimize administrative tasks. Provided as a web application, Parkour is a convenient tool for both deep sequencing service users and laboratory personal. A set of web APIs allow coordinated information sharing with local and remote bioinformaticians. The flexible structure allows workflow customization and simple addition of new features as well as the expansion to other domains.Availability and implementationThe code and documentation are available at https://github.com/maxplanck-ie/[email protected]

Author(s):  
Alba Gutiérrez-Sacristán ◽  
Carlos De Niz ◽  
Cartik Kothari ◽  
Sek Won Kong ◽  
Kenneth D Mandl ◽  
...  

Abstract Precision medicine promises to revolutionize treatment, shifting therapeutic approaches from the classical one-size-fits-all to those more tailored to the patient’s individual genomic profile, lifestyle and environmental exposures. Yet, to advance precision medicine’s main objective—ensuring the optimum diagnosis, treatment and prognosis for each individual—investigators need access to large-scale clinical and genomic data repositories. Despite the vast proliferation of these datasets, locating and obtaining access to many remains a challenge. We sought to provide an overview of available patient-level datasets that contain both genotypic data, obtained by next-generation sequencing, and phenotypic data—and to create a dynamic, online catalog for consultation, contribution and revision by the research community. Datasets included in this review conform to six specific inclusion parameters that are: (i) contain data from more than 500 human subjects; (ii) contain both genotypic and phenotypic data from the same subjects; (iii) include whole genome sequencing or whole exome sequencing data; (iv) include at least 100 recorded phenotypic variables per subject; (v) accessible through a website or collaboration with investigators and (vi) make access information available in English. Using these criteria, we identified 30 datasets, reviewed them and provided results in the release version of a catalog, which is publicly available through a dynamic Web application and on GitHub. Users can review as well as contribute new datasets for inclusion (Web: https://avillachlab.shinyapps.io/genophenocatalog/; GitHub: https://github.com/hms-dbmi/GenoPheno-CatalogShiny).


Author(s):  
Anne Krogh Nøhr ◽  
Kristian Hanghøj ◽  
Genis Garcia Erill ◽  
Zilong Li ◽  
Ida Moltke ◽  
...  

Abstract Estimation of relatedness between pairs of individuals is important in many genetic research areas. When estimating relatedness, it is important to account for admixture if this is present. However, the methods that can account for admixture are all based on genotype data as input, which is a problem for low-depth next-generation sequencing (NGS) data from which genotypes are called with high uncertainty. Here we present a software tool, NGSremix, for maximum likelihood estimation of relatedness between pairs of admixed individuals from low-depth NGS data, which takes the uncertainty of the genotypes into account via genotype likelihoods. Using both simulated and real NGS data for admixed individuals with an average depth of 4x or below we show that our method works well and clearly outperforms all the commonly used state-of-the-art relatedness estimation methods PLINK, KING, relateAdmix, and ngsRelate that all perform quite poorly. Hence, NGSremix is a useful new tool for estimating relatedness in admixed populations from low-depth NGS data. NGSremix is implemented in C/C ++ in a multi-threaded software and is freely available on Github https://github.com/KHanghoj/NGSremix.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Panagiotis Moulos

Abstract Background The relentless continuing emergence of new genomic sequencing protocols and the resulting generation of ever larger datasets continue to challenge the meaningful summarization and visualization of the underlying signal generated to answer important qualitative and quantitative biological questions. As a result, the need for novel software able to reliably produce quick, comprehensive, and easily repeatable genomic signal visualizations in a user-friendly manner is rapidly re-emerging. Results recoup is a Bioconductor package for quick, flexible, versatile, and accurate visualization of genomic coverage profiles generated from Next Generation Sequencing data. Coupled with a database of precalculated genomic regions for multiple organisms, recoup offers processing mechanisms for quick, efficient, and multi-level data interrogation with minimal effort, while at the same time creating publication-quality visualizations. Special focus is given on plot reusability, reproducibility, and real-time exploration and formatting options, operations rarely supported in similar visualization tools in a profound way. recoup was assessed using several qualitative user metrics and found to balance the tradeoff between important package features, including speed, visualization quality, overall friendliness, and the reusability of the results with minimal additional calculations. Conclusion While some existing solutions for the comprehensive visualization of NGS data signal offer satisfying results, they are often compromised regarding issues such as effortless tracking of processing and preparation steps under a common computational environment, visualization quality and user friendliness. recoup is a unique package presenting a balanced tradeoff for a combination of assessment criteria while remaining fast and friendly.


2011 ◽  
Vol 9 (6) ◽  
pp. 238-244 ◽  
Author(s):  
Tongwu Zhang ◽  
Yingfeng Luo ◽  
Kan Liu ◽  
Linlin Pan ◽  
Bing Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document