scholarly journals A Sir2-regulated locus control region in the recombination enhancer of Saccharomyces cerevisiae specifies chromosome III structure

2019 ◽  
Author(s):  
Mingguang Li ◽  
Ryan D. Fine ◽  
Manikarna Dinda ◽  
Stefan Bekiranov ◽  
Jeffrey S. Smith

AbstractThe NAD+-dependent histone deacetylase Sir2 was originally identified in Saccharomyces cerevisiae as a silencing factor for HML and HMR, the heterochromatic cassettes utilized as donor templates during mating-type switching. MATa cells preferentially switch to MATα using HML as the donor, which is driven by an adjacent cis-acting element called the recombination enhancer (RE). In this study we demonstrate that Sir2 and the condensin complex are recruited to the RE exclusively in MATa cells, specifically to the promoter of a small gene within the right half of the RE known as RDT1. We go on to demonstrate that the RDT1 promoter functions as a locus control region (LCR) that regulates both transcription and long-range chromatin interactions. Sir2 represses the transcription of RDT1 until it is redistributed to a dsDNA break at the MAT locus induced by the HO endonuclease during mating-type switching. Condensin is also recruited to the RDT1 promoter and is displaced upon HO induction, but does not significantly repress RDT1 transcription. Instead condensin appears to promote mating-type switching efficiency and donor preference by maintaining proper chromosome III architecture, which is defined by the interaction of HML with the right arm of chromosome III, including MATa and HMR. Remarkably, eliminating Sir2 and condensin recruitment to the RDT1 promoter disrupts this structure and reveals an aberrant interaction between MATa and HMR, consistent with the partially defective donor preference for this mutant. Global condensin subunit depletion also impairs mating type switching efficiency and donor preference, suggesting that modulation of chromosome architecture plays a significant role in controlling mating type switching, thus providing a novel model for dissecting condensin function in vivo.Author summarySir2 is a highly conserved NAD+-dependent protein deacetylase and defining member of the sirtuin protein family. It was identified about 40 years ago in the budding yeast, Saccharomyces cerevisiae, as a gene required for silencing of the cryptic mating-type loci, HML and HMR. These heterochromatic cassettes are utilized as templates for mating-type switching, whereby a programmed DNA double-strand break at the MATa or MATα locus is repaired by gene conversion to the opposite mating type. The preference for switching to the opposite mating type is called donor preference, and in MATa cells, is driven by a cis-acting DNA element called the recombination enhancer (RE). It was believed that the only role for Sir2 in mating-type switching was silencing HML and HMR. However, in this study we show that Sir2 also regulates expression of a small gene (RDT1) in the RE that is activated during mating-type switching. The promoter of this gene is also bound by the condensin complex, and deleting this region of the RE drastically changes chromosome III structure and alters donor preference. The RE therefore appears to function as a complex locus control region (LCR) that links transcriptional control to chromatin architecture, and thus provides a new model for investigating the underlying mechanistic principles of programmed chromosome architectural dynamics.

1996 ◽  
Vol 16 (2) ◽  
pp. 657-668 ◽  
Author(s):  
X Wu ◽  
J K Moore ◽  
J E Haber

During homothallic switching of the mating-type (MAT) gene in Saccharomyces cerevisiae, a- or alpha-specific sequences are replaced by opposite mating-type sequences copied from one of two silent donor loci, HML alpha or HMRa. The two donors lie at opposite ends of chromosome III, approximately 190 and 90 kb, respectively, from MAT. MAT alpha cells preferentially recombine with HMR, while MATa cells select HML. The mechanisms of donor selection are different for the two mating types. MATa cells, deleted for the preferred HML gene, efficiently use HMR as a donor. However, in MAT alpha cells, HML is not an efficient donor when HMR is deleted; consequently, approximately one-third of HO HML alpha MAT alpha hmr delta cells die because they fail to repair the HO endonuclease-induced double-strand break at MAT. MAT alpha donor preference depends not on the sequence differences between HML and HMR or their surrounding regions but on their chromosomal locations. Cloned HMR donors placed at three other locations to the left of MAT, on either side of the centromere, all fail to act as efficient donors. When the donor is placed 37 kb to the left of MAT, its proximity overcomes normal donor preference, but this position is again inefficiently used when additional DNA is inserted in between the donor and MAT to increase the distance to 62 kb. Donors placed to the right of MAT are efficiently recruited, and in fact a donor situated 16 kb proximal to HMR is used in preference to HMR. The cis-acting chromosomal determinants of MAT alpha preference are not influenced by the chromosomal orientation of MAT or by sequences as far as 6 kb from HMR. These data argue that there is an alpha-specific mechanism to inhibit the use of donors to the left of MAT alpha, causing the cell to recombine most often with donors to the right of MAT alpha.


Genetics ◽  
1997 ◽  
Vol 147 (2) ◽  
pp. 399-407 ◽  
Author(s):  
Xiaohua Wu ◽  
Cherry Wu ◽  
James E Haber

Mating type (MAT) switching in Saccharomyces cerevisiae is initiated by a double-strand break (DSB) created at MAT by HO endonuclease. MAT  a cells activate the entire left arm of chromosome III; thus MAT  a preferentially recombines with the silent donor HML. In contrast, MATα cells inactivate the left arm, including HML, and thus preferentially recombine with HMR, 100 kb to the right of MAT. We present a novel competition assay, in which the DSB at MAT can be repaired either by MAT switching or by single-strand annealing (SSA) between two URA3 genes flanking MAT. With preferred donors, MAT  a or MATα switching occurs 65–70% of the time in competition with SSA. When HML is deleted, 40% of MAT  a cells recombine with the “wrong” donor HMR; however, when HMR is deleted, only 18% of MATα cells recombine with HML. In interchromosomal switching, with donors on chromosome III and MAT on chromosome V, MAT  a retains its strong preference for HML and switching is efficient, when the chromosome III recombination enhancer is present. However, MATα donor preference is lost and interchromosomal switching is very inefficient. These experiments demonstrate the utility of using competition between two outcomes to measure the relative efficiency of recombination.


PLoS Genetics ◽  
2019 ◽  
Vol 15 (8) ◽  
pp. e1008339 ◽  
Author(s):  
Mingguang Li ◽  
Ryan D. Fine ◽  
Manikarna Dinda ◽  
Stefan Bekiranov ◽  
Jeffrey S. Smith

2005 ◽  
Vol 25 (18) ◽  
pp. 7976-7987 ◽  
Author(s):  
Sevinc Ercan ◽  
Joseph C. Reese ◽  
Jerry L. Workman ◽  
Robert T. Simpson

ABSTRACT Saccharomyces cerevisiae mating type switching is a gene conversion event that exhibits donor preference. MAT a cells choose HMLα for recombination, and MATα cells choose HMR a. Donor preference is controlled by the recombination enhancer (RE), located between HMLα and MAT a on the left arm of chromosome III. A number of a-cell specific noncoding RNAs are transcribed from the RE locus. Mcm1 and Fkh1 regulate RE activity in a cells. Here we show that Mcm1 binding is required for both the transcription of the noncoding RNAs and Fkh1 binding. This requirement can be bypassed by inserting another promoter into the RE. Moreover, the insertion of this promoter increases donor preference and opens the chromatin structure around the conserved domains of RE. Additionally, we determined that the level of Fkh1 binding positively correlates with the level of donor preference. We conclude that the role of Mcm1 in RE is to open chromatin around the conserved domains and activate transcription; this facilitates Fkh1 binding and the level of this binding determines the level of donor preference.


1981 ◽  
Vol 1 (6) ◽  
pp. 522-534
Author(s):  
B Weiffenbach ◽  
J E Haber

In homothallic cells of Saccharomyces cerevisiae, a or alpha mating type information at the mating type locus (MAT) is replaced by the transposition of the opposite mating type allele from HML alpha or HMRa. The rad52-1 mutation, which reduces mitotic and abolishes meiotic recombination, also affects homothallic switching (Malone and Esposito, Proc. Natl. Acad. Sci. U.S.A. 77:503-507, 1980). We have found that both HO rad52 MATa and HO rad52 MAT alpha cells die. This lethality is suppressed by mutations that substantially reduce but do not eliminate homothallic conversions. These mutations map at or near the MAT locus (MAT alpha inc, MATa-inc, MATa stk1) or are unlinked to MAT (HO-1 and swi1). These results suggest that the switching event itself is involved in the lethality. With the exception of swi1, HO rad52 strains carrying one of the above mutations cannot convert mating type at all. MAT alpha rad52 HO swi1 strains apparently can switch MAT alpha to MATa. However, when we analyzed these a maters, we found that few, if any, of them were bona fide MATa cells. These a-like cells were instead either deleted for part of chromosome III distal to and including MAT or had lost the entire third chromosome. Approximately 30% of the time, an a-like cell could be repaired to a normal MATa genotype if the cell was mated to a RAD52 MAT alpha-inc strain. The effects of rad52 were also studied in mata/MAT alpha-inc rad52/rad52 ho/HO diploids. When this diploid attempted to switch mata to MATa, an unstable broken chromosome was generated in nearly every cell. These studies suggest that homothallic switching involves the formation of a double-stranded deoxyribonucleic acid break or a structure which is labile in rad52 cells and results in a broken chromosome. We propose that the production of a double-stranded deoxyribonucleic acid break is the lethal event in rad52 HO cells.


1982 ◽  
Vol 2 (1) ◽  
pp. 11-20 ◽  
Author(s):  
R K Chan ◽  
C A Otte

Eight independently isolated mutants which are supersensitive (Sst-) to the G1 arrest induced by the tridecapeptide pheromone alpha factor were identified by screening mutagenized Saccharomyces cerevisiae MATa cells on solid medium for increased growth inhibition by alpha factor. These mutants carried lesions in two complementation groups, sst1 and sst2. Mutations at the sst1 locus were mating type specific: MATa sst1 cells were supersensitive to alpha factor, but MAT alpha sst1 cells were not supersensitive to a factor. In contrast, mutations at the sst2 locus conferred supersensitivity to the pheromones of the opposite mating type on both MATa and MAT alpha cells. Even in the absence of added alpha pheromone, about 10% of the cells in exponentially growing cultures of MATa strains carrying any of three different alleles of sst2 (including the ochre mutation sst2-4) had the aberrant morphology ("shmoo" shape) that normally develops only after MATa cells are exposed to alpha factor. This "self-shmooing" phenotype was genetically linked to the sst2 mutations, although the leakiest allele isolated (sst2-3) did not display this characteristic. Normal MATa/MAT alpha diploids do not respond to pheromones; diploids homozygous for an sst2 mutation (MATa/MAT alpha sst2-1/sst2-1) were still insensitive to alpha factor. The sst1 gene was mapped to within 6.9 centimorgans of his6 on chromosome IX. The sst2 gene was unlinked to sst1, was not centromere linked, and was shown to be neither linked to nor centromere distal to MAT on the right arm of chromosome III.


1981 ◽  
Vol 1 (6) ◽  
pp. 522-534 ◽  
Author(s):  
B Weiffenbach ◽  
J E Haber

In homothallic cells of Saccharomyces cerevisiae, a or alpha mating type information at the mating type locus (MAT) is replaced by the transposition of the opposite mating type allele from HML alpha or HMRa. The rad52-1 mutation, which reduces mitotic and abolishes meiotic recombination, also affects homothallic switching (Malone and Esposito, Proc. Natl. Acad. Sci. U.S.A. 77:503-507, 1980). We have found that both HO rad52 MATa and HO rad52 MAT alpha cells die. This lethality is suppressed by mutations that substantially reduce but do not eliminate homothallic conversions. These mutations map at or near the MAT locus (MAT alpha inc, MATa-inc, MATa stk1) or are unlinked to MAT (HO-1 and swi1). These results suggest that the switching event itself is involved in the lethality. With the exception of swi1, HO rad52 strains carrying one of the above mutations cannot convert mating type at all. MAT alpha rad52 HO swi1 strains apparently can switch MAT alpha to MATa. However, when we analyzed these a maters, we found that few, if any, of them were bona fide MATa cells. These a-like cells were instead either deleted for part of chromosome III distal to and including MAT or had lost the entire third chromosome. Approximately 30% of the time, an a-like cell could be repaired to a normal MATa genotype if the cell was mated to a RAD52 MAT alpha-inc strain. The effects of rad52 were also studied in mata/MAT alpha-inc rad52/rad52 ho/HO diploids. When this diploid attempted to switch mata to MATa, an unstable broken chromosome was generated in nearly every cell. These studies suggest that homothallic switching involves the formation of a double-stranded deoxyribonucleic acid break or a structure which is labile in rad52 cells and results in a broken chromosome. We propose that the production of a double-stranded deoxyribonucleic acid break is the lethal event in rad52 HO cells.


1982 ◽  
Vol 2 (1) ◽  
pp. 11-20
Author(s):  
R K Chan ◽  
C A Otte

Eight independently isolated mutants which are supersensitive (Sst-) to the G1 arrest induced by the tridecapeptide pheromone alpha factor were identified by screening mutagenized Saccharomyces cerevisiae MATa cells on solid medium for increased growth inhibition by alpha factor. These mutants carried lesions in two complementation groups, sst1 and sst2. Mutations at the sst1 locus were mating type specific: MATa sst1 cells were supersensitive to alpha factor, but MAT alpha sst1 cells were not supersensitive to a factor. In contrast, mutations at the sst2 locus conferred supersensitivity to the pheromones of the opposite mating type on both MATa and MAT alpha cells. Even in the absence of added alpha pheromone, about 10% of the cells in exponentially growing cultures of MATa strains carrying any of three different alleles of sst2 (including the ochre mutation sst2-4) had the aberrant morphology ("shmoo" shape) that normally develops only after MATa cells are exposed to alpha factor. This "self-shmooing" phenotype was genetically linked to the sst2 mutations, although the leakiest allele isolated (sst2-3) did not display this characteristic. Normal MATa/MAT alpha diploids do not respond to pheromones; diploids homozygous for an sst2 mutation (MATa/MAT alpha sst2-1/sst2-1) were still insensitive to alpha factor. The sst1 gene was mapped to within 6.9 centimorgans of his6 on chromosome IX. The sst2 gene was unlinked to sst1, was not centromere linked, and was shown to be neither linked to nor centromere distal to MAT on the right arm of chromosome III.


2020 ◽  
Vol 18 (3) ◽  
pp. 357-366
Author(s):  
Anna S. Zhuk ◽  
Elena I. Stepchenkova ◽  
Sergey G. Inge-Vechtomov

Background. The alpha-test allows to detect inherited genetic changes of different types, as well as phenotypic expression of primary DNA lesions before the lesions are fixed by repair. Here we investigate ability of the alpha-test to detect base modifications induced by 6-N-hydroxylaminopurine (HAP) and determine frequency of inherited and non-inherited genetic changes in yeast strains treated with HAP. Materials and methods. The alpha-test is based on mating type regulation and detects cell type switch from to a in heterothallic yeast Saccharomyces cerevisiae. The frequency of mating type switching reflects level of both spontaneous and induced by a mutagen DNA instability. The alpha-test may be performed in two variants: illegitimate hybridization and cytoduction. Conducting both complementary tests and analysis of phenotypes of the illegitimate hybrids and cytoductants allows to detect the full spectrum of genetic events that lead to mating type switching, such as chromosome III loss and chromosome III arm loss, mutations and temporary lesions, recombination and conversion. Results. HAP increases the frequency of illegitimate hybridization by 5-fold, and illegitimate cytoduction by 10-fold. A large proportion of the primary lesions induced by HAP causes temporary mating type switch and the remainder parts are converted into inherited point mutations. Conclusion. The alpha-test can detect HAP-induced base modifications and may be used to investigate the ratio between correct and error-prone processing of such primary DNA lesions. Like other genetic toxicology tests the alpha-test has limitations, which are discussed.


Sign in / Sign up

Export Citation Format

Share Document