type gene
Recently Published Documents


TOTAL DOCUMENTS

402
(FIVE YEARS 70)

H-INDEX

50
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Chirag Gupta ◽  
Jielin Xu ◽  
Ting Jin ◽  
Saniya Khullar ◽  
Xiaoyu Liu ◽  
...  

Dysregulation of gene expression in Alzheimer's disease (AD) remains elusive, especially at the cell type level. Gene regulatory network, a key molecular mechanism linking transcription factors (TFs) and regulatory elements to govern target gene expression, can change across cell types in the human brain and thus serve as a model for studying gene dysregulation in AD. However, it is still challenging to understand how cell type networks work abnormally under AD. To address this, we integrated single-cell multi-omics data and predicted the gene regulatory networks in AD and control for four major cell types, excitatory and inhibitory neurons, microglia and oligodendrocytes. Importantly, we applied network biology approaches to analyze the changes of network characteristics across these cell types, and between AD and control. For instance, many hub TFs target different genes between AD and control (rewiring). Also, these networks show strong hierarchical structures in which top TFs (master regulators) are largely common across cell types, whereas different TFs operate at the middle levels in some cell types (e.g., microglia). The regulatory logics of enriched network motifs (e.g., feed-forward loops) further uncover cell-type-specific TF-TF cooperativities in gene regulation. The cell type networks are highly modular. Several network modules with cell-type-specific expression changes in AD pathology are enriched with AD-risk genes and putative targets of approved and pending AD drugs, suggesting possible cell-type genomic medicine in AD. Finally, using the cell type gene regulatory networks, we developed machine learning models to classify and prioritize additional AD genes. We found that top prioritized genes predict clinical phenotypes (e.g., cognitive impairment). Overall, this single-cell network biology analysis provides a comprehensive map linking genes, regulatory networks, cell types and drug targets and reveals mechanisms on cell-type gene dyregulation in AD.


Author(s):  
Longjie Li ◽  
Kejun Dong ◽  
Xinyu Wang ◽  
Meizhou Zhang ◽  
Jun Li ◽  
...  

2021 ◽  
Vol 9 (9) ◽  
pp. e002922
Author(s):  
Takashi Yoshida ◽  
Chisato Ohe ◽  
Junichi Ikeda ◽  
Naho Atsumi ◽  
Haruyuki Ohsugi ◽  
...  

BackgroundClear cell renal cell carcinoma (ccRCC) displays heterogeneity in appearance—a distinctive pale clear to eosinophilic cytoplasm; however, little is known about the underlying mechanisms and clinical implications. We investigated the role of these eosinophilic features in ccRCC on oncological outcomes and response to tyrosine kinase inhibitors (TKIs) and immune checkpoint inhibitors (ICIs).MethodsOne-hundred and thirty-eight ccRCC cases undergoing radical surgery (cohort 1) and 54 metastatic ccRCC cases receiving either TKIs or ICIs (cohort 2) were included. After histological evaluation, all cases were divided into three phenotypes based on the eosinophilic features at the highest-grade area: clear, mixed, or eosinophilic type. Gene expression and immunohistochemical analyses were performed to explore the potential mechanisms of these phenotypes in cohort 1. Further, the association of the three phenotypes with the best objective response to TKI or ICI, clinical benefit (complete/partial response or stable disease), and overall survival (OS) was assessed in cohort 2.ResultsThe clear type was significantly associated with increased hypoxia as well as angiogenesis gene signatures compared with the eosinophilic type. Gene signatures and protein expression related to effector T cell and immune checkpoint molecules were elevated to a greater extent in the eosinophilic type, followed by the mixed and clear types. The mixed and eosinophilic types exhibited greater PBRM1-negativity and increased prevalence of the epithelial-mesenchymal transition gene signature than the clear type. In the mixed/eosinophilic types of cohort 2, significant clinical benefit was observed in the ICI therapy group versus the TKI therapy group (p=0.035), and TKI therapy vs ICI therapy was an independent factor for worse prognosis of OS (HR 3.236; p=0.012).ConclusionThe histological phenotype based on the eosinophilic features, which are linked to major immunological mechanisms of ccRCC, was significantly correlated with therapeutic efficacy.


2021 ◽  
Author(s):  
Julia Kazmierski ◽  
Carina Elsner ◽  
Katinka Doehner ◽  
Shuting Xu ◽  
Aurelie Ducroux ◽  
...  

Upon recognition of aberrantly located DNA, the innate immune sensor cGAS activates STING/IRF-3-driven antiviral responses. Here we characterized the ability of a specific variant of the cGAS-encoding gene MB21D1, rs610913, to alter cGAS-mediated DNA sensing and viral infection. rs610913 is a frequent G>T polymorphism resulting in a P261H exchange in the cGAS protein. Data from the International Collaboration for the Genomics of HIV suggested that rs610913 nominally associates with HIV-1 acquisition in vivo. Molecular modeling of cGAS(P261H) hinted towards the possibility for an additional binding site for a potential cellular co-factor in cGAS dimers. However, cGAS(WT) or cGAS(P261H)-reconstituted THP-1 cGAS KO cells shared steady-state expression of interferon-stimulated genes (ISGs), as opposed to cells expressing the enzymatically inactive cGAS(G212A/S213A). Accordingly, cGAS(WT) and cGAS(P261H) cells were less susceptible to lentiviral transduction and infection with HIV-1, HSV-1, and Chikungunya virus as compared to cGAS KO- or cGAS(G212A/S213A) cells. Upon DNA challenge, innate immune activation appeared to be mildly reduced upon expression of cGAS(P261H) compared to cGAS(WT). Finally, DNA challenge of PBMCs from donors homozygously expressing rs610913 provoked a trend towards a slightly reduced type I IFN response as compared to PBMCs from GG donors. Taken together, the steady-state activity of cGAS maintains a base-line antiviral state rendering cells more refractory to ISG-sensitive viral infections. Even though rs610913 failed to grossly differ phenotypically from the wild-type gene, its expression potentially results in a slightly altered susceptibility to viral infections in vivo.


Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1223
Author(s):  
Randi Yeager ◽  
G. Guy Bushkin ◽  
Emily Singer ◽  
Rui Fu ◽  
Benjamin Cooperman ◽  
...  

Gametogenesis in diploid cells of the budding yeast Saccharomyces cerevisiae produces four haploid meiotic products called spores. Spores are dormant until nutrients trigger germination, when they bud asexually or mate to return to the diploid state. Each sporulating diploid produces a mix of spores of two haploid mating types, a and α. In asexually dividing haploids, the mating types result from distinct, mutually exclusive gene expression programs responsible for production of mating pheromones and the receptors to sense them, all of which are silent in diploids. It was assumed that spores only transcribe haploid- and mating-type-specific genes upon germination. We find that dormant spores of each mating type harbor transcripts representing all these genes, with the exception of Mata1, which we found to be enriched in a spores. Mata1 transcripts, from a rare yeast gene with two introns, were mostly unspliced. If the retained introns reflect tethering to the MATa locus, this could provide a mechanism for biased inheritance. Translation of pheromones and receptors were repressed at least until germination. We find antisense transcripts to many mating genes that may be responsible. These findings add to the growing number of examples of post-transcriptional regulation of gene expression during gametogenesis.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Giorgio Basile ◽  
Sevim Kahraman ◽  
Ercument Dirice ◽  
Hui Pan ◽  
Jonathan M. Dreyfuss ◽  
...  

Abstract Background Human pancreatic islets are a central focus of research in metabolic studies. Transcriptomics is frequently used to interrogate alterations in cultured human islet cells using single-cell RNA-sequencing (scRNA-seq). We introduce single-nucleus RNA-sequencing (snRNA-seq) as an alternative approach for investigating transplanted human islets. Methods The Nuclei EZ protocol was used to obtain nuclear preparations from fresh and frozen human islet cells. Such preparations were first used to generate snRNA-seq datasets and compared to scRNA-seq output obtained from cells from the same donor. Finally, we employed snRNA-seq to obtain the transcriptomic profile of archived human islets engrafted in immunodeficient animals. Results We observed virtually complete concordance in identifying cell types and gene proportions as well as a strong association of global and islet cell type gene signatures between scRNA-seq and snRNA-seq applied to fresh and frozen cultured or transplanted human islet samples. Conclusions We propose snRNA-seq as a reliable strategy to probe transcriptomic profiles of freshly harvested or frozen sources of transplanted human islet cells especially when scRNA-seq is not ideal.


2021 ◽  
Vol 26 (01) ◽  
pp. 177-184
Author(s):  
Nguyen Quang Duc Tien

The present study reports the transient expression of chi42 genes encoding 42 kDa chitinase from T. asperellum SH16 in N. benthamiana via agroinfiltration. The efficacy of agroinfiltration for chi42 genes including a wild-type gene (Chi42) and two synthetic genes (syncodChi42-1 and syncodChi42-2) was determined. Accordingly, coinfiltration of two vectors pMYV719 carrying one of three genes chi42 and pMYV508 carrying gene p19 expedited the higher expression of recombinant enzymes whose genes were optimized for codon usage in plant tissues. The highest chitinolytic activity of about 290 U/mL was found in plants containing the gene syncodChi42-2 after 7 days of injection, 1.7 and 2.6 times higher than that of genes syncodChi42-1 and chi42. Recombinant chitinase has also exhibited activity against the pathogenic fungus Sclerotium rolfsii under in vitro condition. A higher expression level of syncodChi42-2 gene in N. benthamiana and its antifungal activity promise potential applications in the field of transgenic crops against phytopathogenic fungi. © 2021 Friends Science Publishers


2021 ◽  
Author(s):  
Yaoqi Si ◽  
Shusong Zheng ◽  
Jianqing Niu ◽  
Shuiquan Tian ◽  
Mengjun Gu ◽  
...  
Keyword(s):  

Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 891
Author(s):  
Maria Chiriaco ◽  
Irene Salfa ◽  
Giorgiana Madalina Ursu ◽  
Cristina Cifaldi ◽  
Silvia Di Cesare ◽  
...  

X-linked Granulomatous Disease (XL-CGD) carriers were previously thought to be clinically healthy because random X-chromosome inactivation (XCI) allows approximately half of their phagocytes/monocytes to express functional gp91phox protein. This supports the NADPH oxidase activity necessary for the killing of engulfed pathogens. Some XL-CGD carriers suffer from inflammatory and autoimmune manifestations as well as infections, although the skewed-XCI of a mutated allele is reported to be exclusively determinant for infection susceptibility. Indeed, immune dysregulation could be determined by dysfunctional non-phagocytic leukocytes rather than the percentage of functioning neutrophils. Here we investigated in a cohort of 12 X-CGD female carriers at a particular time of their life the gp91phox protein expression/function and how this affects immune cell function. We showed that 50% of carriers have an age-independent skewed-XCI and 65% of them have a misrepresented expression of the wild-type gene. The majority of carriers manifested immune dysregulation and GI manifestations regardless of age and XCI. Immunological investigations revealed an increase in CD19+ B cells, CD56bright-NK cell percentage, a slightly altered CD107a upregulation on CD4+ T cells, and reduced INFγ-production by CD4+ and CD8+ cells. Notably, we demonstrated that the residual level of ROS robustly correlates with INFγ-expressing T cells, suggesting a role in promoting immune dysregulation in carriers.


iScience ◽  
2021 ◽  
Vol 24 (6) ◽  
pp. 102669
Author(s):  
Guanxiong Yan ◽  
Wentao Yang ◽  
Xiaojie Han ◽  
Kai Chen ◽  
Jie Xiong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document