dna lesions
Recently Published Documents


TOTAL DOCUMENTS

1473
(FIVE YEARS 444)

H-INDEX

88
(FIVE YEARS 10)

2022 ◽  
Vol 119 (3) ◽  
pp. e2114065119
Author(s):  
Juntaek Oh ◽  
Tiezheng Jia ◽  
Jun Xu ◽  
Jenny Chong ◽  
Peter B. Dervan ◽  
...  

Elongating RNA polymerase II (Pol II) can be paused or arrested by a variety of obstacles. These obstacles include DNA lesions, DNA-binding proteins, and small molecules. Hairpin pyrrole-imidazole (Py-Im) polyamides bind to the minor groove of DNA in a sequence-specific manner and induce strong transcriptional arrest. Remarkably, this Py-Im–induced Pol II transcriptional arrest is persistent and cannot be rescued by transcription factor TFIIS. In contrast, TFIIS can effectively rescue the transcriptional arrest induced by a nucleosome barrier. The structural basis of Py-Im–induced transcriptional arrest and why TFIIS cannot rescue this arrest remain elusive. Here we determined the X-ray crystal structures of four distinct Pol II elongation complexes (Pol II ECs) in complex with hairpin Py-Im polyamides as well as of the hairpin Py-Im polyamides–dsDNA complex. We observed that the Py-Im oligomer directly interacts with RNA Pol II residues, introduces compression of the downstream DNA duplex, prevents Pol II forward translocation, and induces Pol II backtracking. These results, together with biochemical studies, provide structural insight into the molecular mechanism by which Py-Im blocks transcription. Our structural study reveals why TFIIS fails to promote Pol II bypass of Py-Im–induced transcriptional arrest.


2022 ◽  
Vol 5 (4) ◽  
pp. e202101134
Author(s):  
Ka Man Wong ◽  
Devin A King ◽  
Erin K Schwartz ◽  
Rafael E Herrera ◽  
Ashby J Morrison

Carcinogenic insult, such as UV light exposure, creates DNA lesions that evolve into mutations if left unrepaired. These resulting mutations can contribute to carcinogenesis and drive malignant phenotypes. Susceptibility to carcinogens (i.e., the propensity to form a carcinogen-induced DNA lesion) is regulated by both genetic and epigenetic factors. Importantly, carcinogen susceptibility is a critical contributor to cancer mutagenesis. It is known that mutations can be prevented by tumor suppressor regulation of DNA damage response pathways; however, their roles carcinogen susceptibility have not yet been reported. In this study, we reveal that the retinoblastoma (RB1) tumor suppressor regulates UV susceptibility across broad regions of the genome. In particular, centromere and telomere-proximal regions exhibit significant increases in UV lesion susceptibility when RB1 is deleted. Several cancer-related genes are located within genomic regions of increased susceptibility, including telomerase reverse transcriptase, TERT, thereby accelerating mutagenic potential in cancers with RB1 pathway alterations. These findings reveal novel genome stability mechanisms of a tumor suppressor and uncover new pathways to accumulate mutations during cancer evolution.


Reproduction ◽  
2022 ◽  
Author(s):  
Kashmira Bane ◽  
Junita Desouza ◽  
Asma Rojewale ◽  
Rajendra Katkam ◽  
Gwendolyn Fernandes ◽  
...  

Recent data suggest that the DNA damage response (DDR) is altered in the eutopic endometrium (EE) of women with endometriosis and this probably ensues in response to higher DNA damage encountered by the EE in endometriosis. DDR operates in a tissue-specific manner and involves different pathways depending on the type of DNA lesions. Among these pathways, the non-homologous end joining (NHEJ) pathway plays a critical role in the repair of double-stranded DNA breaks. The present study was undertaken to explore whether NHEJ is affected in the EE of women with endometriosis. Towards this, we focused on the X-Ray Repair Cross-Complementing 4 (XRCC4) protein, one of the core components of the NHEJ pathway. Endometrial XRCC4 protein levels in the mid-proliferative phase were found significantly (p<0.05) downregulated in women with endometriosis, compared to control women. Investigation of a microarray-based largest dataset in the GEO database (GSE51981) revealed a similar trend at the transcript level in the EE of women with endometriosis, compared to control women. Further in-vitro studies were undertaken to explore the effects of H2O2-induced oxidative stress on DNA damage, as assessed by γ-H2AFX and 8-hydroxy-2’-deoxyguanosine (8-OHdG) immunolocalization, and XRCC4 protein levels in endometrial stromal (ThESCs) and epithelial (Ishikawa) cells. A significant decrease in XRCC4 protein levels and significantly higher localization of γ-H2AFX and 8-OHdG were evident in ThESCs and Ishikawa cells experiencing oxidative stress. Overall, the study demonstrates that the endometrial XRCC4 expression is dysregulated in women with endometriosis and this could be due to higher oxidative stress in endometriosis.


2021 ◽  
Vol 23 (1) ◽  
pp. 230
Author(s):  
Eva Balint ◽  
Ildiko Unk

DNA polymerase η (Polη) is a translesion synthesis polymerase that can bypass different DNA lesions with varying efficiency and fidelity. Its most well-known function is the error-free bypass of ultraviolet light-induced cyclobutane pyrimidine dimers. The lack of this unique ability in humans leads to the development of a cancer-predisposing disease, the variant form of xeroderma pigmentosum. Human Polη can insert rNTPs during DNA synthesis, though with much lower efficiency than dNTPs, and it can even extend an RNA chain with ribonucleotides. We have previously shown that Mn2+ is a specific activator of the RNA synthetic activity of yeast Polη that increases the efficiency of the reaction by several thousand-fold over Mg2+. In this study, our goal was to investigate the metal cofactor dependence of RNA synthesis by human Polη. We found that out of the investigated metal cations, only Mn2+ supported robust RNA synthesis. Steady state kinetic analysis showed that Mn2+ activated the reaction a thousand-fold compared to Mg2+, even during DNA damage bypass opposite 8-oxoG and TT dimer. Our results revealed a two order of magnitude higher affinity of human Polη towards ribonucleotides in the presence of Mn2+ compared to Mg2+. It is noteworthy that activation occurred without lowering the base selectivity of the enzyme on undamaged templates, whereas the fidelity decreased across a TT dimer. In summary, our data strongly suggest that, like with its yeast homolog, Mn2+ is the proper metal cofactor of hPolη during RNA chain extension, and selective metal cofactor utilization contributes to switching between its DNA and RNA synthetic activities.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xu Feng ◽  
Baochang Zhang ◽  
Ruyi Xu ◽  
Zhe Gao ◽  
Xiaotong Liu ◽  
...  

Abasic sites are among the most abundant DNA lesions encountered by cells. Their replication requires actions of specialized DNA polymerases. Herein, two archaeal specialized DNA polymerases were examined for their capability to perform translesion DNA synthesis (TLS) on the lesion, including Sulfolobuss islandicus Dpo2 of B-family, and Dpo4 of Y-family. We found neither Dpo2 nor Dpo4 is efficient to complete abasic sites bypass alone, but their sequential actions promote lesion bypass. Enzyme kinetics studies further revealed that the Dpo4’s activity is significantly inhibited at +1 to +3 site past the lesion, at which Dpo2 efficiently extends the primer termini. Furthermore, their activities are inhibited upon synthesis of 5–6 nt TLS patches. Once handed over to Dpo1, these substrates basically inactivate its exonuclease, enabling the transition from proofreading to polymerization of the replicase. Collectively, by functioning as an “extender” to catalyze further DNA synthesis past the lesion, Dpo2 bridges the activity gap between Dpo4 and Dpo1 in the archaeal TLS process, thus achieving more efficient lesion bypass.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2810
Author(s):  
Irina Ielciu ◽  
Gabriela Adriana Filip ◽  
Ilioara Oniga ◽  
Neli-Kinga Olah ◽  
Ioana Bâldea ◽  
...  

The present study aimed to compare two polyphenolic-enriched extracts obtained from the Thymus marschallianus Willd. (Lamiaceae) species, harvested from culture (TMCE in doses of 0.66 μg GAE/mL and 0.066 μg GAE/mL) and from spontaneous flora (TMSE in doses of 0.94 μg GAE/mL and 0.094 μg GAE/mL) by assessing their biological effects on human umbilical vein endothelial cells (HUVECs) exposed to normoglycemic (137 mmol/L glucose) and hyperglycemic conditions (200 mmol/L glucose). Extracts were obtained by solid phase extraction (SPE) and analyzed by chromatographical (HPLC-DAD) and spectrophotometrical methods. Their effects on hyperglycemia were evaluated by the quantification of oxidative stress and NF-ĸB, pNF-ĸB, HIF-1α, and γ-H2AX expressions. The HPLC-DAD analysis highlighted significant amounts of rosmarinic acid (ranging between 0.18 and 1.81 mg/g dry extract), luteolin (ranging between 2.04 and 17.71 mg/g dry extract), kaempferol (ranging between 1.85 and 7.39 mg/g dry extract), and apigenin (ranging between 4.97 and 65.67 mg/g dry extract). Exposure to hyperglycemia induced oxidative stress and the activation of NF-ĸ increased the expression of HIF-1α and produced DNA lesions. The polyphenolic-enriched extracts proved a significant reduction of oxidative stress and γ-H2AX formation and improved the expression of HIF-1α, suggesting their protective role on endothelial cells in hyperglycemia. The tested extracts reduced the total NF-ĸB expression and diminished its activation in hyperglycemic conditions. The obtained results bring evidence for the use of the polyphenolic-enriched extracts of T. marschallianus as adjuvants in hyperglycemia.


Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 2010
Author(s):  
Kamila Schirmeisen ◽  
Sarah A. E. Lambert ◽  
Karol Kramarz

DNA lesions have properties that allow them to escape their nuclear compartment to achieve DNA repair in another one. Recent studies uncovered that the replication fork, when its progression is impaired, exhibits increased mobility when changing nuclear positioning and anchors to nuclear pore complexes, where specific types of homologous recombination pathways take place. In yeast models, increasing evidence points out that nuclear positioning is regulated by small ubiquitin-like modifier (SUMO) metabolism, which is pivotal to maintaining genome integrity at sites of replication stress. Here, we review how SUMO-based pathways are instrumental to spatially segregate the subsequent steps of homologous recombination during replication fork restart. In particular, we discussed how routing towards nuclear pore complex anchorage allows distinct homologous recombination pathways to take place at halted replication forks.


Development ◽  
2021 ◽  
Author(s):  
Wei-Ting Yueh ◽  
Vijay Pratap Singh ◽  
Jennifer L. Gerton

Aneuploidy is frequently observed in oocytes and early embryos, begging the question of how genome integrity is monitored and preserved during this critical period. SMC3 is a subunit of the cohesin complex that supports genome integrity, but its role in maintaining the genome in this window of mammalian development is unknown. We discovered that although depletion of Smc3 following meiotic S phase in mouse oocytes allowed accurate meiotic chromosome segregation, adult females were infertile. We provide evidence that DNA lesions accumulated following S phase in SMC3-deficient zygotes, followed by mitosis with lagging chromosomes, elongated spindles, micronuclei, and arrest at the 2-cell stage. Remarkably, although centromeric cohesion was defective, the dosage of SMC3 was sufficient to enable embryogenesis in juvenile mutant females. Our findings suggest that despite previous reports of aneuploidy in early embryos, chromosome missegregation in zygotes halts embryogenesis at the 2-cell stage. Smc3 is a maternal gene with essential functions in repair of spontaneous damage associated with DNA replication and subsequent chromosome segregation in zygotes, making cohesin a key protector of the zygotic genome.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7602
Author(s):  
Athanasia Pavlopoulou ◽  
Seyedehsadaf Asfa ◽  
Evangelos Gioukakis ◽  
Ifigeneia V. Mavragani ◽  
Zacharenia Nikitaki ◽  
...  

Different types of DNA lesions forming in close vicinity, create clusters of damaged sites termed as “clustered/complex DNA damage” and they are considered to be a major challenge for DNA repair mechanisms resulting in significant repair delays and induction of genomic instability. Upon detection of DNA damage, the corresponding DNA damage response and repair (DDR/R) mechanisms are activated. The inability of cells to process clustered DNA lesions efficiently has a great impact on the normal function and survival of cells. If complex lesions are left unrepaired or misrepaired, they can lead to mutations and if persistent, they may lead to apoptotic cell death. In this in silico study, and through rigorous data mining, we have identified human genes that are activated upon complex DNA damage induction like in the case of ionizing radiation (IR) and beyond the standard DNA repair pathways, and are also involved in cancer pathways, by employing stringent bioinformatics and systems biology methodologies. Given that IR can cause repair resistant lesions within a short DNA segment (a few nm), thereby augmenting the hazardous and toxic effects of radiation, we also investigated the possible implication of the most biologically important of those genes in comorbid non-neoplastic diseases through network integration, as well as their potential for predicting survival in cancer patients.


Sign in / Sign up

Export Citation Format

Share Document