scholarly journals A cross–nearest neighbor/Monte Carlo algorithm for single molecule localization microscopy defines interactions between p53, Mdm2, and MEG3

2019 ◽  
Author(s):  
Nicholas C. Bauer ◽  
Anli Yang ◽  
Xin Wang ◽  
Yunli Zhou ◽  
Anne Klibanski ◽  
...  

AbstractThe functions of long noncoding (lnc)RNAs such as MEG3 are defined by their interactions with other RNAs and proteins. These interactions, in turn, are shaped by their subcellular localization and temporal context. Therefore, it is important to be able to analyze the relationships of lncRNAs while preserving cellular architecture. The ability of MEG3 to suppress cell proliferation led to its recognition as a tumor suppressor. MEG3 has been proposed to activate p53 by disrupting the interaction of p53 with Mdm2. To test this mechanism in the native cellular context, we employed two-color direct stochastic optical reconstruction microscopy (dSTORM), a single-molecule localization microscopy (SMLM) technique to detect and quantify the localizations of p53, Mdm2, and MEG3 in U2OS cells. We developed a new cross–nearest neighbor/Monte Carlo algorithm to quantify the association of these molecules. Proof of concept for our method was obtained by examining the binding between MEG3 and p53, and Mdm2 and p53. In contrast to previous models, our data support a model in which MEG3 modulates p53 independently of the interaction with Mdm2.

2019 ◽  
Author(s):  
Martin Pauli ◽  
Mila M. Paul ◽  
Sven Proppert ◽  
Marzieh Sharifi ◽  
Felix Repp ◽  
...  

ABSTRACTRevealing the molecular organization of anatomically precisely defined brain regions is necessary for the refined understanding of synaptic plasticity. Although, three-dimensional (3D) single-molecule localization microscopy can provide the required molecular resolution, single-molecule imaging more than a few micrometers deep into tissue remains challenging. To quantify presynaptic active zones (AZ) of entire, large, conditional detonator hippocampal mossy fiber (MF) boutons with diameters as large as 10 µm, we developed a method for aberration-free volumetricdirectstochastic optical reconstruction microscopy (dSTORM). An optimized protocol for fast repeated axial scanning and efficient sequential labeling of the AZ scaffold Bassoon and membrane bound GFP with Alexa Fluor 647 enables 3D-dSTORM imaging of 25 µm thick mouse brain sections and assignment of AZs to specific neuronal substructures. Quantitative data analysis revealed large differences in Bassoon cluster size and density for distinct hippocampal regions with largest clusters in MF boutons.


2019 ◽  
Author(s):  
Angélique Jimenez ◽  
Karoline Friedl ◽  
Christophe Leterrier

AbstractSuper-resolution microscopy has profoundly transformed how we study the architecture of cells, revealing unknown structures and refining our view of cellular assemblies. Among the various techniques, the resolution of Single Molecule Localization Microscopy (SMLM) can reach the size of macromolecular complexes and offer key insights on their nanoscale arrangement in situ. SMLM is thus a demanding technique and taking advantage of its full potential requires specifically optimized procedures. Here we describe how we perform the successive steps of an SMLM workflow, focusing on single-color Stochastic Optical Reconstruction Microscopy (STORM) as well as multicolor DNA Points Accumulation for imaging in Nanoscale Topography (DNA-PAINT) of fixed samples. We provide detailed procedures for careful sample fixation and immunostaining of typical cellular structures: cytoskeleton, clathrin-coated pits, and organelles. We then offer guidelines for optimal imaging and processing of SMLM data in order to optimize reconstruction quality and avoid the generation of artifacts. We hope that the tips and tricks we discovered over the years and detail here will be useful for researchers looking to make the best possible SMLM images, a pre-requisite for meaningful biological discovery.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Martin Pauli ◽  
Mila M. Paul ◽  
Sven Proppert ◽  
Achmed Mrestani ◽  
Marzieh Sharifi ◽  
...  

AbstractRevealing the molecular organization of anatomically precisely defined brain regions is necessary for refined understanding of synaptic plasticity. Although three-dimensional (3D) single-molecule localization microscopy can provide the required resolution, imaging more than a few micrometers deep into tissue remains challenging. To quantify presynaptic active zones (AZ) of entire, large, conditional detonator hippocampal mossy fiber (MF) boutons with diameters as large as 10 µm, we developed a method for targeted volumetric direct stochastic optical reconstruction microscopy (dSTORM). An optimized protocol for fast repeated axial scanning and efficient sequential labeling of the AZ scaffold Bassoon and membrane bound GFP with Alexa Fluor 647 enabled 3D-dSTORM imaging of 25 µm thick mouse brain sections and assignment of AZs to specific neuronal substructures. Quantitative data analysis revealed large differences in Bassoon cluster size and density for distinct hippocampal regions with largest clusters in MF boutons.


2016 ◽  
Author(s):  
Shenghang Jiang ◽  
Sai Divya Challapalli ◽  
Yong Wang

ABSTRACTWe report a robust nonparametric descriptor,J′(r), for quantifying the spatial organization of molecules in singlemolecule localization microscopy.J′(r), based on nearest neighbor distribution functions, does not require any parameter as an input for analyzing point patterns. We show thatJ′(r) displays a valley shape in the presence of clusters of molecules, and the characteristics of the valley reliably report the clustering features in the data. More importantly, the position of theJ′(r) valley (rJ′m) depends exclusively on the density of clustering molecules (ρc). Therefore, it is ideal for direct measurements of clustering density of molecules in single-molecule localization microscopy.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6667
Author(s):  
Seungah Lee ◽  
Indra Batjikh ◽  
Seong Ho Kang

The natural characteristics of deoxyribonucleic acid (DNA) enable its advanced applications in nanotechnology as a special tool that can be detected by high-resolution imaging with precise localization. Super-resolution (SR) microscopy enables the examination of nanoscale molecules beyond the diffraction limit. With the development of SR microscopy methods, DNA nanostructures can now be optically assessed. Using the specific binding of fluorophores with their target molecules, advanced single-molecule localization microscopy (SMLM) has been expanded into different fields, allowing wide-range detection at the single-molecule level. This review discusses the recent progress in the SR imaging of DNA nano-objects using SMLM techniques, such as direct stochastic optical reconstruction microscopy, binding-activated localization microscopy, and point accumulation for imaging nanoscale topography. Furthermore, we discuss their advantages and limitations, present applications, and future perspectives.


2011 ◽  
Vol 64 (5) ◽  
pp. 503 ◽  
Author(s):  
Sebastian van de Linde ◽  
Steve Wolter ◽  
Markus Sauer

Within only a few years super-resolution fluorescence imaging based on single-molecule localization and image reconstruction has attracted considerable interest because it offers a comparatively simple way to achieve a substantially improved optical resolution down to ∼20 nm in the image plane. Since super-resolution imaging methods such as photoactivated localization microscopy, fluorescence photoactivation localization microscopy, stochastic optical reconstruction microscopy, and direct stochastic optical reconstruction microscopy rely critically on exact fitting of the centre of mass and the shape of the point-spread-function of isolated emitters unaffected by neighbouring fluorophores, controlled photoswitching or photoactivation of fluorophores is the key parameter for resolution improvement. This review will explain the principles and requirements of single-molecule based localization microscopy, and compare different super-resolution imaging concepts and highlight their strengths and limitations with respect to applications in fixed and living cells with high spatio-temporal resolution.


2019 ◽  
Author(s):  
Zacharias Thiel ◽  
Pablo Rivera-Fuentes

Many biomacromolecules are known to cluster in microdomains with specific subcellular localization. In the case of enzymes, this clustering greatly defines their biological functions. Nitroreductases are enzymes capable of reducing nitro groups to amines and play a role in detoxification and pro-drug activation. Although nitroreductase activity has been detected in mammalian cells, the subcellular localization of this activity remains incompletely characterized. Here, we report a fluorescent probe that enables super-resolved imaging of pools of nitroreductase activity within mitochondria. This probe is activated sequentially by nitroreductases and light to give a photo-crosslinked adduct of active enzymes. In combination with a general photoactivatable marker of mitochondria, we performed two-color, threedimensional, single-molecule localization microscopy. These experiments allowed us to image the sub-mitochondrial organization of microdomains of nitroreductase activity.<br>


2019 ◽  
Author(s):  
Zacharias Thiel ◽  
Pablo Rivera-Fuentes

Many biomacromolecules are known to cluster in microdomains with specific subcellular localization. In the case of enzymes, this clustering greatly defines their biological functions. Nitroreductases are enzymes capable of reducing nitro groups to amines and play a role in detoxification and pro-drug activation. Although nitroreductase activity has been detected in mammalian cells, the subcellular localization of this activity remains incompletely characterized. Here, we report a fluorescent probe that enables super-resolved imaging of pools of nitroreductase activity within mitochondria. This probe is activated sequentially by nitroreductases and light to give a photo-crosslinked adduct of active enzymes. In combination with a general photoactivatable marker of mitochondria, we performed two-color, threedimensional, single-molecule localization microscopy. These experiments allowed us to image the sub-mitochondrial organization of microdomains of nitroreductase activity.<br>


Sign in / Sign up

Export Citation Format

Share Document