localization microscopy
Recently Published Documents


TOTAL DOCUMENTS

836
(FIVE YEARS 369)

H-INDEX

52
(FIVE YEARS 14)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Matthew R. Lowerison ◽  
Nathiya Vaithiyalingam Chandra Sekaran ◽  
Wei Zhang ◽  
Zhijie Dong ◽  
Xi Chen ◽  
...  

AbstractAging-related cognitive decline is an emerging health crisis; however, no established unifying mechanism has been identified for the cognitive impairments seen in an aging population. A vascular hypothesis of cognitive decline has been proposed but is difficult to test given the requirement of high-fidelity microvascular imaging resolution with a broad and deep brain imaging field of view, which is restricted by the fundamental trade-off of imaging penetration depth and resolution. Super-resolution ultrasound localization microscopy (ULM) offers a potential solution by exploiting circulating microbubbles to achieve a vascular resolution approaching the capillary scale without sacrificing imaging depth. In this report, we apply ULM imaging to a mouse model of aging and quantify differences in cerebral vascularity, blood velocity, and vessel tortuosity across several brain regions. We found significant decreases in blood velocity, and significant increases in vascular tortuosity, across all brain regions in the aged cohort, and significant decreases in blood volume in the cerebral cortex. These data provide the first-ever ULM measurements of subcortical microvascular dynamics in vivo within the context of the aging brain and reveal that aging has a major impact on these measurements.


2022 ◽  
Author(s):  
Benoit Beliard ◽  
Chaimae Ahmanna ◽  
Elodie Tiran ◽  
Kadia Kante ◽  
Thomas Deffieux ◽  
...  

Abstract Acute spinal cord injury (SCI) leads to severe damage to the microvascular network. The process of spontaneous repair is accompanied by formation of new blood vessels; their functionality, however, presumably very important for functional recovery, has never been clearly established, as most studies so far used fixed tissues. Here, combining ultrafast Doppler imaging and Ultrasound Localization Microscopy (ULM) on the same animals, we proceeded at a detailed analysis of structural and functional vascular alterations associated with the establishment of chronic SCI, both at macroscopic and microscopic scales. Using a standardized animal model of SCI, our results demonstrate striking hemodynamic alterations in several subparts of the spinal cord: a reduced blood velocity in the lesion site, and an asymmetrical hypoperfusion caudal but not rostral to the lesion. In addition, the worsening of many evaluated parameters at later time points suggests that the neoformed vascular network is not yet fully operational, and reveals ULM as an efficient in vivo readout for spinal cord vascular alterations. Finally, we show statistical correlations between the diverse biomarkers of vascular dysfunction and SCI severity. The imaging modality developed here will allow evaluating recovery of vascular function over time in pre-clinical models of SCI. Also, used on SCI patients in combination with other quantitative markers of neural tissue damage, it may help classifying lesion severity and predict possible treatment outcomes in patients.


2021 ◽  
Author(s):  
Leonid Andronov ◽  
Rachel Genthial ◽  
Didier Hentsch ◽  
Bruno P Klaholz

Single molecule localization microscopy (SMLM) with a dichroic image splitter can provide invaluable multi-color information regarding colocalization of individual molecules, but it often suffers from technical limitations. So far, demixing algorithms give suboptimal results in terms of localization precision and correction of chromatic aberrations. Here we present an image splitter based multi-color SMLM method (splitSMLM) that offers much improved localization precision & drift correction, compensation of chromatic aberrations, and optimized performance of fluorophores in a specific buffer to equalize their reactivation rates for simultaneous imaging. A novel spectral demixing algorithm, SplitViSu, fully preserves localization precision with essentially no data loss and corrects chromatic aberrations at the nanometer scale. Multi-color performance is further improved by using optimized fluorophore and filter combinations. Applied to three-color imaging of the nuclear pore complex (NPC), this method provides a refined positioning of the individual NPC proteins and reveals that Pom121 clusters act as NPC deposition loci, hence illustrating strength and general applicability of the method.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
A. Femius Koenderink ◽  
Roman Tsukanov ◽  
Jörg Enderlein ◽  
Ignacio Izeddin ◽  
Valentina Krachmalnicoff

Abstract Probing light–matter interaction at the nanometer scale is one of the most fascinating topics of modern optics. Its importance is underlined by the large span of fields in which such accurate knowledge of light–matter interaction is needed, namely nanophotonics, quantum electrodynamics, atomic physics, biosensing, quantum computing and many more. Increasing innovations in the field of microscopy in the last decade have pushed the ability of observing such phenomena across multiple length scales, from micrometers to nanometers. In bioimaging, the advent of super-resolution single-molecule localization microscopy (SMLM) has opened a completely new perspective for the study and understanding of molecular mechanisms, with unprecedented resolution, which take place inside the cell. Since then, the field of SMLM has been continuously improving, shifting from an initial drive for pushing technological limitations to the acquisition of new knowledge. Interestingly, such developments have become also of great interest for the study of light–matter interaction in nanostructured materials, either dielectric, metallic, or hybrid metallic-dielectric. The purpose of this review is to summarize the recent advances in the field of nanophotonics that have leveraged SMLM, and conversely to show how some concepts commonly used in nanophotonics can benefit the development of new microscopy techniques for biophysics. To this aim, we will first introduce the basic concepts of SMLM and the observables that can be measured. Then, we will link them with their corresponding physical quantities of interest in biophysics and nanophotonics and we will describe state-of-the-art experiments that apply SMLM to nanophotonics. The problem of localization artifacts due to the interaction of the fluorescent emitter with a resonant medium and possible solutions will be also discussed. Then, we will show how the interaction of fluorescent emitters with plasmonic structures can be successfully employed in biology for cell profiling and membrane organization studies. We present an outlook on emerging research directions enabled by the synergy of localization microscopy and nanophotonics.


2021 ◽  
Author(s):  
Shih-Te Hung ◽  
Jelmer Cnossen ◽  
Daniel Fan ◽  
Carlas S. Smith

Author(s):  
David Virant ◽  
Ilijana Vojnovic ◽  
Jannik Winkelmeier ◽  
Marc Endesfelder ◽  
Bartosz Turkowyd ◽  
...  

AbstractThe key to ensuring proper chromosome segregation during mitosis is the kinetochore complex. This large and tightly regulated multi-protein complex links the centromeric chromatin to the microtubules attached to the spindle pole body and as such leads the segregation process. Understanding the architecture, function and regulation of this vital complex is therefore essential. However, due to its complexity and dynamics, only its individual subcomplexes could be studied in high-resolution structural detail so far.In this study we construct a nanometer-precise in situ map of the human-like regional kinetochore of Schizosaccharomyces pombe (S. pombe) using multi-color single-molecule localization microscopy (SMLM). We measure each kinetochore protein of interest (POI) in conjunction with two reference proteins, cnp1CENP-A at the centromere and sad1 at the spindle pole. This arrangement allows us to determine the cell cycle and in particularly the mitotic plane, and to visualize individual centromere regions separately. From these data, we determine protein distances within the complex using Bayesian inference, establish the stoichiometry of each POI for individual chromosomes and, consequently, build an in situ kinetochore model for S.pombe with so-far unprecedented precision. Being able to quantify the kinetochore proteins within the full in situ kinetochore structure, we provide valuable new insights in the S.pombe kinetochore architecture.


2021 ◽  
Vol 1 ◽  
Author(s):  
Jan Christoph Thiele ◽  
Oleksii Nevskyi ◽  
Dominic A. Helmerich ◽  
Markus Sauer ◽  
Jörg Enderlein

Fluorescence-lifetime single molecule localization microscopy (FL-SMLM) adds the lifetime dimension to the spatial super-resolution provided by SMLM. Independent of intensity and spectrum, this lifetime information can be used, for example, to quantify the energy transfer efficiency in Förster Resonance Energy Transfer (FRET) imaging, to probe the local environment with dyes that change their lifetime in an environment-sensitive manner, or to achieve image multiplexing by using dyes with different lifetimes. We present a thorough theoretical analysis of fluorescence-lifetime determination in the context of FL-SMLM and compare different lifetime-fitting approaches. In particular, we investigate the impact of background and noise, and give clear guidelines for procedures that are optimized for FL-SMLM. We do also present and discuss our public-domain software package “Fluorescence-Lifetime TrackNTrace,” which converts recorded fluorescence microscopy movies into super-resolved FL-SMLM images.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jielei Ni ◽  
Bo Cao ◽  
Gang Niu ◽  
Danni Chen ◽  
Guotao Liang ◽  
...  

Abstract Single-molecule localization microscopy (SMLM) plays an irreplaceable role in biological studies, in which nanometer-sized biomolecules are hardly to be resolved due to diffraction limit unless being stochastically activated and accurately located by SMLM. For biological samples preimmobilized for SMLM, most biomolecules are cross-linked and constrained at their immobilizing sites but still expected to undergo confined stochastic motion in regard to their nanometer sizes. However, few lines of direct evidence have been reported about the detectability and influence of confined biomolecule stochastic motion on localization precision in SMLM. Here, we access the potential stochastic motion for each immobilized single biomolecule by calculating the displacements between any two of its localizations at different frames during sequential imaging of Alexa Fluor-647-conjugated oligonucleotides. For most molecules, localization displacements are remarkably larger at random frame intervals than at shortest intervals even after sample drift correction, increase with interval times and then saturate, showing that biomolecule stochastic motion is detected and confined around the immobilizing sizes in SMLM. Moreover, localization precision is inversely proportional to confined biomolecule stochastic motion, whereas it can be deteriorated or improved by enlarging the biomolecules or adding a post-crosslinking step, respectively. Consistently, post-crosslinking of cell samples sparsely stained for tubulin proteins results in a better localization precision. Overall, this study reveals that confined stochastic motion of immobilized biomolecules worsens localization precision in SMLM, and improved localization precision can be achieved via restricting such a motion.


Sign in / Sign up

Export Citation Format

Share Document