scholarly journals A simple device to immobilize protists for electrophysiology and microinjection

2019 ◽  
Author(s):  
Anirudh Kulkarni ◽  
Nicolas Escoubet ◽  
Léa-Laetitia Pontani ◽  
Alexis Michel Prevost ◽  
Romain Brette

ABSTRACTWe present a simple device to mechanically immobilize motile cells such as ciliates and flagellates. It can be used in particular for intracellular electrophysiology and microinjection. A transparent filter with holes smaller than the specimen is stretched over an outlet. A flow is induced by either a peristaltic pump or a depressurized tank, mechanically entraining cells to the bottom, where they immobilize against the filter. The cells swim again freely as soon as the flow is stopped. We demonstrate the device by recording action potentials in Paramecium and injecting a fluorescent dye in the cytosol.

Author(s):  
J. R. Kuhn ◽  
M. Poenie

Cell shape and movement are controlled by elements of the cytoskeleton including actin filaments an microtubules. Unfortunately, it is difficult to visualize the cytoskeleton in living cells and hence follow it dynamics. Immunofluorescence and ultrastructural studies of fixed cells while providing clear images of the cytoskeleton, give only a static picture of this dynamic structure. Microinjection of fluorescently Is beled cytoskeletal proteins has proved useful as a way to follow some cytoskeletal events, but long terry studies are generally limited by the bleaching of fluorophores and presence of unassembled monomers.Polarization microscopy has the potential for visualizing the cytoskeleton. Although at present, it ha mainly been used for visualizing the mitotic spindle. Polarization microscopy is attractive in that it pro vides a way to selectively image structures such as cytoskeletal filaments that are birefringent. By combing ing standard polarization microscopy with video enhancement techniques it has been possible to image single filaments. In this case, however, filament intensity depends on the orientation of the polarizer and analyzer with respect to the specimen.


Author(s):  
Thomas J. Deerinck ◽  
Maryann E. Martone ◽  
Varda Lev-Ram ◽  
David P. L. Green ◽  
Roger Y. Tsien ◽  
...  

The confocal laser scanning microscope has become a powerful tool in the study of the 3-dimensional distribution of proteins and specific nucleic acid sequences in cells and tissues. This is also proving to be true for a new generation of high contrast intermediate voltage electron microscopes (IVEM). Until recently, the number of labeling techniques that could be employed to allow examination of the same sample with both confocal and IVEM was rather limited. One method that can be used to take full advantage of these two technologies is fluorescence photooxidation. Specimens are labeled by a fluorescent dye and viewed with confocal microscopy followed by fluorescence photooxidation of diaminobenzidine (DAB). In this technique, a fluorescent dye is used to photooxidize DAB into an osmiophilic reaction product that can be subsequently visualized with the electron microscope. The precise reaction mechanism by which the photooxidation occurs is not known but evidence suggests that the radiationless transfer of energy from the excited-state dye molecule undergoing the phenomenon of intersystem crossing leads to the formation of reactive oxygen species such as singlet oxygen. It is this reactive oxygen that is likely crucial in the photooxidation of DAB.


2010 ◽  
Vol 44 (3) ◽  
pp. 38 ◽  
Author(s):  
ROBERT FINN
Keyword(s):  

1991 ◽  
Vol 83 (4) ◽  
pp. 601-604 ◽  
Author(s):  
Tadeusz Zawadzki ◽  
Eric Davies ◽  
Halina Dziubinska ◽  
Kazimierz Trebacz

Sign in / Sign up

Export Citation Format

Share Document