scholarly journals An unbiased resource of novel SNP markers provides a new chronology for the human Y chromosome and reveals a deep phylogenetic structure in Africa

2014 ◽  
Vol 24 (3) ◽  
pp. 535-544 ◽  
Author(s):  
R. Scozzari ◽  
A. Massaia ◽  
B. Trombetta ◽  
G. Bellusci ◽  
N. M. Myres ◽  
...  
2020 ◽  
Vol 24 (7) ◽  
pp. 785-793
Author(s):  
M. P. Ponomarenko ◽  
E. B. Sharypova ◽  
I. A. Drachkova ◽  
L. K. Savinkova ◽  
I. V. Chadaeva ◽  
...  

Reproductive potential is the most important conditional indicator reflecting the ability of individuals in a population to reproduce, survive and develop under optimal environmental conditions. As for humans, the concept of reproductive potential can include the level of the individual’s mental and physical state, which allows them to reproduce healthy offspring when they reach social and physical maturity. Female reproductive potential has been investigated in great detail, whereas the male reproductive potential (MRP) has not received the equal amount of attention as yet. Therefore, here we focused on the human Y chromosome and found candidate single-nucleotide polymorphism (SNP) markers of MRP. With our development named Web-service SNP_TATA_Z-tester, we examined in silico all 35 unannotated SNPs within 70-bp proximal promoters of the three Y-linked genes, CDY2A, SHOX and ZFY, which represent all types of human Y-chromosome genes, namely: unique, pseudo-autosomal, and human X-chromosome gene paralogs, respectively. As a result, we found 11 candidate SNP markers for MRP, which can significantly alter the TATA-binding protein (TBP) binding affinity for promoters of these genes. First of all, we selectively verified in vitro the values of the TBP-promoter affinity under this study, Pearson’s linear correlation between predicted and measured values of which were r = 0.94 (significance p < 0.005). Next, as a discussion, using keyword search tools of the PubMed database, we found clinically proven physiological markers of human pathologies, which correspond to a change in the expression of the genes carrying the candidate SNP markers predicted here. These were markers for spermatogenesis disorders (ZFY: rs1388535808 and rs996955491), for male maturation arrest (CDY2A: rs200670724) as well as for disproportionate short stature at Madelung deformity (e. g., SHOX: rs1452787381) and even for embryogenesis disorders (e. g., SHOX: rs28378830). This indicates a wide range of MRI indicators, alterations in which should be expected in the case of SNPs in the promoters of the human Y-chromosome genes and which can go far beyond changes in male fertility.


BMC Genetics ◽  
2020 ◽  
Vol 21 (S1) ◽  
Author(s):  
Mikhail Ponomarenko ◽  
Maxim Kleshchev ◽  
Petr Ponomarenko ◽  
Irina Chadaeva ◽  
Ekaterina Sharypova ◽  
...  

Abstract Background In population ecology, the concept of reproductive potential denotes the most vital indicator of chances to produce and sustain a healthy descendant until his/her reproductive maturity under the best conditions. This concept links quality of life and longevity of an individual with disease susceptibilities encoded by his/her genome. Female reproductive potential has been investigated deeply, widely, and comprehensively in the past, but the male one has not received an equal amount of attention. Therefore, here we focused on the human Y chromosome and found candidate single-nucleotide polymorphism (SNP) markers of male reproductive potential. Results Examining in silico (i.e., using our earlier created Web-service SNP_TATA_Z-tester) all 1206 unannotated SNPs within 70 bp proximal promoters of all 63 Y-linked genes, we found 261 possible male-reproductive-potential SNP markers that can significantly alter the binding affinity of TATA-binding protein (TBP) for these promoters. Among them, there are candidate SNP markers of spermatogenesis disorders (e.g., rs1402972626), pediatric cancer (e.g., rs1483581212) as well as male anxiety damaging family relationships and mother’s and children’s health (e.g., rs187456378). First of all, we selectively verified in vitro both absolute and relative values of the analyzed TBP–promoter affinity, whose Pearson’s coefficients of correlation between predicted and measured values were r = 0.84 (significance p <  0.025) and r = 0.98 (p <  0.025), respectively. Next, we found that there are twofold fewer candidate SNP markers decreasing TBP–promoter affinity relative to those increasing it, whereas in the genome-wide norm, SNP-induced damage to TBP–promoter complexes is fourfold more frequent than SNP-induced improvement (p <  0.05, binomial distribution). This means natural selection against underexpression of these genes. Meanwhile, the numbers of candidate SNP markers of an increase and decrease in male reproductive potential were indistinguishably equal to each other (p <  0.05) as if male self-domestication could have happened, with its experimentally known disruptive natural selection. Because there is still not enough scientific evidence that this could have happened, we discuss the human diseases associated with candidate SNP markers of male reproductive potential that may correspond to domestication-related disorders in pets. Conclusions Overall, our findings seem to support a self-domestication syndrome with disruptive natural selection by male reproductive potential preventing Y-linked underexpression of a protein.


2004 ◽  
Vol 24 (2) ◽  
pp. 308-312 ◽  
Author(s):  
Fadi J. Charchar ◽  
Maciej Tomaszewski ◽  
Beata Lacka ◽  
Jaroslaw Zakrzewski ◽  
Ewa Zukowska-Szczechowska ◽  
...  

2002 ◽  
Vol 70 (5) ◽  
pp. 1197-1214 ◽  
Author(s):  
Fulvio Cruciani ◽  
Piero Santolamazza ◽  
Peidong Shen ◽  
Vincent Macaulay ◽  
Pedro Moral ◽  
...  

1988 ◽  
Vol 79 (1) ◽  
pp. 36-38 ◽  
Author(s):  
M. S. Lin ◽  
A. Zhang ◽  
M. G. Wilson ◽  
A. Fujimoto

Lab Animal ◽  
2012 ◽  
Vol 41 (4) ◽  
pp. 89-89
Author(s):  
Monica Harrington

Nature ◽  
1990 ◽  
Vol 346 (6281) ◽  
pp. 279-281 ◽  
Author(s):  
David C. Page ◽  
Elizabeth M. C. Fisher ◽  
Barbara McGillivray ◽  
Laura G. Brown

2000 ◽  
Vol 67 (1) ◽  
pp. 182-196 ◽  
Author(s):  
Peter Forster ◽  
Arne Röhl ◽  
Petra Lünnemann ◽  
Catrin Brinkmann ◽  
Tatiana Zerjal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document