scholarly journals Disruptive natural selection by male reproductive potential prevents underexpression of protein-coding genes on the human Y chromosome as a self-domestication syndrome

BMC Genetics ◽  
2020 ◽  
Vol 21 (S1) ◽  
Author(s):  
Mikhail Ponomarenko ◽  
Maxim Kleshchev ◽  
Petr Ponomarenko ◽  
Irina Chadaeva ◽  
Ekaterina Sharypova ◽  
...  

Abstract Background In population ecology, the concept of reproductive potential denotes the most vital indicator of chances to produce and sustain a healthy descendant until his/her reproductive maturity under the best conditions. This concept links quality of life and longevity of an individual with disease susceptibilities encoded by his/her genome. Female reproductive potential has been investigated deeply, widely, and comprehensively in the past, but the male one has not received an equal amount of attention. Therefore, here we focused on the human Y chromosome and found candidate single-nucleotide polymorphism (SNP) markers of male reproductive potential. Results Examining in silico (i.e., using our earlier created Web-service SNP_TATA_Z-tester) all 1206 unannotated SNPs within 70 bp proximal promoters of all 63 Y-linked genes, we found 261 possible male-reproductive-potential SNP markers that can significantly alter the binding affinity of TATA-binding protein (TBP) for these promoters. Among them, there are candidate SNP markers of spermatogenesis disorders (e.g., rs1402972626), pediatric cancer (e.g., rs1483581212) as well as male anxiety damaging family relationships and mother’s and children’s health (e.g., rs187456378). First of all, we selectively verified in vitro both absolute and relative values of the analyzed TBP–promoter affinity, whose Pearson’s coefficients of correlation between predicted and measured values were r = 0.84 (significance p <  0.025) and r = 0.98 (p <  0.025), respectively. Next, we found that there are twofold fewer candidate SNP markers decreasing TBP–promoter affinity relative to those increasing it, whereas in the genome-wide norm, SNP-induced damage to TBP–promoter complexes is fourfold more frequent than SNP-induced improvement (p <  0.05, binomial distribution). This means natural selection against underexpression of these genes. Meanwhile, the numbers of candidate SNP markers of an increase and decrease in male reproductive potential were indistinguishably equal to each other (p <  0.05) as if male self-domestication could have happened, with its experimentally known disruptive natural selection. Because there is still not enough scientific evidence that this could have happened, we discuss the human diseases associated with candidate SNP markers of male reproductive potential that may correspond to domestication-related disorders in pets. Conclusions Overall, our findings seem to support a self-domestication syndrome with disruptive natural selection by male reproductive potential preventing Y-linked underexpression of a protein.

2020 ◽  
Vol 24 (7) ◽  
pp. 785-793
Author(s):  
M. P. Ponomarenko ◽  
E. B. Sharypova ◽  
I. A. Drachkova ◽  
L. K. Savinkova ◽  
I. V. Chadaeva ◽  
...  

Reproductive potential is the most important conditional indicator reflecting the ability of individuals in a population to reproduce, survive and develop under optimal environmental conditions. As for humans, the concept of reproductive potential can include the level of the individual’s mental and physical state, which allows them to reproduce healthy offspring when they reach social and physical maturity. Female reproductive potential has been investigated in great detail, whereas the male reproductive potential (MRP) has not received the equal amount of attention as yet. Therefore, here we focused on the human Y chromosome and found candidate single-nucleotide polymorphism (SNP) markers of MRP. With our development named Web-service SNP_TATA_Z-tester, we examined in silico all 35 unannotated SNPs within 70-bp proximal promoters of the three Y-linked genes, CDY2A, SHOX and ZFY, which represent all types of human Y-chromosome genes, namely: unique, pseudo-autosomal, and human X-chromosome gene paralogs, respectively. As a result, we found 11 candidate SNP markers for MRP, which can significantly alter the TATA-binding protein (TBP) binding affinity for promoters of these genes. First of all, we selectively verified in vitro the values of the TBP-promoter affinity under this study, Pearson’s linear correlation between predicted and measured values of which were r = 0.94 (significance p < 0.005). Next, as a discussion, using keyword search tools of the PubMed database, we found clinically proven physiological markers of human pathologies, which correspond to a change in the expression of the genes carrying the candidate SNP markers predicted here. These were markers for spermatogenesis disorders (ZFY: rs1388535808 and rs996955491), for male maturation arrest (CDY2A: rs200670724) as well as for disproportionate short stature at Madelung deformity (e. g., SHOX: rs1452787381) and even for embryogenesis disorders (e. g., SHOX: rs28378830). This indicates a wide range of MRI indicators, alterations in which should be expected in the case of SNPs in the promoters of the human Y-chromosome genes and which can go far beyond changes in male fertility.


2014 ◽  
Vol 24 (3) ◽  
pp. 535-544 ◽  
Author(s):  
R. Scozzari ◽  
A. Massaia ◽  
B. Trombetta ◽  
G. Bellusci ◽  
N. M. Myres ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Natalya V. Klimova ◽  
Evgeniya Oshchepkova ◽  
Irina Chadaeva ◽  
Ekaterina Sharypova ◽  
Petr Ponomarenko ◽  
...  

Using our previously published Web service SNP_TATA_Comparator, we conducted a genome-wide study of single-nucleotide polymorphisms (SNPs) within core promoters of 68 human rheumatoid arthritis (RA)-related genes. Using 603 SNPs within 25 genes clinically associated with RA-comorbid disorders, we predicted 84 and 70 candidate SNP markers for overexpression and underexpression of these genes, respectively, among which 58 and 96 candidate SNP markers, respectively, can relieve and worsen RA as if there is a neutral drift toward susceptibility to RA. Similarly, we predicted natural selection toward susceptibility to RA for 8 immunostimulatory genes (e.g., IL9R) and 10 genes most often associated with RA (e.g., NPY). On the contrary, using 25 immunosuppressive genes, we predicted 70 and 109 candidate SNP markers aggravating and relieving RA, respectively (e.g., IL1R2 and TGFB2), suggesting that natural selection can simultaneously additionally yield resistance to RA. We concluded that disruptive natural selection of human immunostimulatory and immunosuppressive genes is concurrently elevating and reducing the risk of RA, respectively. So, we hypothesize that RA in human could be a self-domestication syndrome referring to evolution patterns in domestic animals. We tested this hypothesis by means of public RNA-Seq data on 1740 differentially expressed genes (DEGs) of pets vs. wild animals (e.g., dogs vs. wolves). The number of DEGs in the domestic animals corresponding to worsened RA condition in humans was significantly larger than that in the related wild animals (10 vs. 3). Moreover, much less DEGs in the domestic animals were accordant to relieved RA condition in humans than those in the wild animals (1 vs. 8 genes). This indicates that the anthropogenic environment, in contrast to a natural one, affects gene expression across the whole genome (e.g., immunostimulatory and immunosuppressive genes) in a manner that likely contributes to RA. The difference in gene numbers is statistically significant as confirmed by binomial distribution (p &lt; 0.01), Pearson’s χ2 (p &lt; 0.01), and Fisher’s exact test (p &lt; 0.05). This allows us to propose RA as a candidate symptom within a self-domestication syndrome. Such syndrome might be considered as a human’s payment with health for the benefits received during evolution.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 701
Author(s):  
Ovidiu Bîcă ◽  
Ioan Sârbu ◽  
Carmen Iulia Ciongradi

This article reviews the latest information about preserving reproductive potential that can offer enhanced prospects for future conception in the pediatric male population with cancer, whose fertility is threatened because of the gonadotoxic effects of chemotherapy and radiation. An estimated 400,000 children and adolescents aged 0–19 years will be diagnosed with cancer each year. Fertility is compromised in one-third of adult male survivors of childhood cancer. We present the latest approaches and techniques for fertility preservation, starting with fertility preservation counselling, a clinical practice guideline used around the world and finishing with recent advances in basic science and translational research. Improving strategies for the maturation of germ cells in vitro combined with new molecular techniques for gene editing could be the next scientific keystone to eradicate genetic diseases such as cancer related mutations in the offspring of cancer survivors.


2004 ◽  
Vol 24 (2) ◽  
pp. 308-312 ◽  
Author(s):  
Fadi J. Charchar ◽  
Maciej Tomaszewski ◽  
Beata Lacka ◽  
Jaroslaw Zakrzewski ◽  
Ewa Zukowska-Szczechowska ◽  
...  

2002 ◽  
Vol 70 (5) ◽  
pp. 1197-1214 ◽  
Author(s):  
Fulvio Cruciani ◽  
Piero Santolamazza ◽  
Peidong Shen ◽  
Vincent Macaulay ◽  
Pedro Moral ◽  
...  

1997 ◽  
Vol 25 (3) ◽  
pp. 343-345
Author(s):  
Ethel Thurston

The Multicenter Evaluation of In Vitro Cytotoxicity programme is most important to animal protection, since it has validated 64 in vitro tests using advanced human data for 50 chemicals as the “gold standard”. Therefore, it has been able to compare animal cell tests, human cell tests and whole-animal tests fairly with unbiased scientific evidence. Added bonuses have included the identification and development of missing in vitro information (“missing tests”), publication of time-related lethal blood concentrations for all 50 chemicals, and some preliminary plans to resolve the 50,000 untested (or poorly tested) chemicals in the chemical mountain.


1988 ◽  
Vol 79 (1) ◽  
pp. 36-38 ◽  
Author(s):  
M. S. Lin ◽  
A. Zhang ◽  
M. G. Wilson ◽  
A. Fujimoto

Sign in / Sign up

Export Citation Format

Share Document