Radiation of Gravitational Waves in Brans-Dicke General-Relativity Theory

1967 ◽  
Vol 160 (5) ◽  
pp. 1108-1110 ◽  
Author(s):  
R. F. O'Connell ◽  
A. Salmona
Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 87
Author(s):  
Júlio C. Fabris ◽  
Marcelo H. Alvarenga ◽  
Mahamadou Hamani Daouda ◽  
Hermano Velten

Unimodular gravity is characterized by an extra condition with respect to general relativity, i.e., the determinant of the metric is constant. This extra condition leads to a more restricted class of invariance by coordinate transformation: The symmetry properties of unimodular gravity are governed by the transverse diffeomorphisms. Nevertheless, if the conservation of the energy–momentum tensor is imposed in unimodular gravity, the general relativity theory is recovered with an additional integration constant which is associated to the cosmological term Λ. However, if the energy–momentum tensor is not conserved separately, a new geometric structure appears with potentially observational signatures. In this text, we consider the evolution of gravitational waves in a nonconservative unimodular gravity, showing how it differs from the usual signatures in the standard model. As our main result, we verify that gravitational waves in the nonconservative version of unimodular gravity are strongly amplified during the evolution of the universe.


1. In a recent investigation of the problem of two bodies in general relativity theory, Prof. Levi-Civita (1937 b ) has reached the conclusion that the centre of gravity has a secular acceleration in the direction of the major axis of the orbit towards the periastron of the larger mass. He gives an example of a binary star in which this acceleration may become detectable in much less than a century, perhaps even in a few years. Since the periastron slowly revolves, Levi-Civita’s result implies that the binary star as a whole spontaneously describes a circle of very large radius. There seems to be no obvious ground for regarding this as impossible; it is conceivable that an unsymmetrical system may radiate momentum by gravitational waves and so experience a recoil. But the behaviour is so peculiar as to inspire doubt; and we determined to re-examine the problem with a view either to detecting an error or to obtaining further light on the nature of the phenomenon.


2014 ◽  
Vol 23 (08) ◽  
pp. 1450068 ◽  
Author(s):  
O. Goldoni ◽  
M. F. A. da Silva ◽  
G. Pinheiro ◽  
R. Chan

In this paper, we have studied nonstationary radiative spherically symmetric spacetime, in general covariant theory (U(1) extension) of Hořava–Lifshitz (HL) gravity without the projectability condition and in the infrared (IR) limit. The Newtonian prepotential φ was assumed null. We have shown that there is not the analogue of the Vaidya's solution in the Hořava–Lifshitz Theory (HLT), as we know in the General Relativity Theory (GRT). Therefore, we conclude that the gauge field A should interact with the null radiation field of the Vaidya's spacetime in the HLT.


In this contribution, my purpose is to study a new mathematical instrument introduced by me in 1958-9: the tensor and spinor propagators. These propagators are extensions of the scalar propagator of Jordan-Pauli which plays an important part in quantum-field theory. It is possible to construct, with these propagators, commutators and anticommutators for the various free fields, in the framework of general relativity theory (see Lichnerowicz 1959 a, b, c , 1960, 1961 a, b, c ; and for an independent introduction of propagators DeWitt & Brehme 1960).


1983 ◽  
Vol 51 (1) ◽  
pp. 92-93 ◽  
Author(s):  
H. A. Buchdahl ◽  
Daniel M. Greenberger

Author(s):  
Jin Tong Wang ◽  
Jiangdi Fan ◽  
Aaron X. Kan

It has been well known that there is a redshift of photon frequency due to the gravitational potential. Scott et al. [Can. J. Phys. 44 (1966) 1639, https://doi.org/10.1139/p66-137 ] pointed out that general relativity theory predicts the gravitational redshift. However, using the quantum mechanics theory related to the photon Hamiltonian and photon Schrodinger equation, we calculate the redshift due to the gravitational potential. The result is exactly the same as that from the general relativity theory.


Sign in / Sign up

Export Citation Format

Share Document