covariant theory
Recently Published Documents


TOTAL DOCUMENTS

150
(FIVE YEARS 11)

H-INDEX

23
(FIVE YEARS 1)

Galaxies ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 76
Author(s):  
Yehonatan Knoll

Local scale covariance posits that no privileged length scales should appear in the fundamental equations of local, Minkowskian physics—why should nature have scale, but not position preferences?—yet, they clearly do. A resolution is proposed wherein scale covariance is promoted to the status of Poincaré covariance, and privileged scales emerge as a result of `scale clustering’, similarly to the way privileged positions emerge in a translation covariant theory. The implied ability of particles to `move in scale’ has recently been shown by the author to offer a possible elegant solution to the missing matter problem. For cosmology, the implications are: (a) a novel component of the cosmological redshift, due to scale-motion over cosmological times; (b) a radically different scenario for the early universe, during which the conditions for such scale clustering are absent. The former is quantitatively analyzed, resulting in a unique cosmological model, empirically coinciding with standard Einstein–de-Sitter cosmology, only in some non-physical limit. The latter implication is qualitatively discussed as part of a critique of the conceptual foundations of ΛCDM which ignores scale covariance altogether.


Author(s):  
Shri Ram ◽  
S. Chandel ◽  
M.K. Verma

In this paper, we obtain an anisotropic Bianchi type-II space-time with dark matter and the modified holographic Ricci dark energy in the scale-covariant theory of gravitation. Exact solutions of the field equations are obtained by assuming (I) a negative constant value of the deceleration parameter (II) the component σ<sup>1</sup><sub>1</sub> of the shear tensor σ<sup>j</sup><sub>i</sub> is proportional to the mean Hubble parameter and (III) the gauge function Φ is proportional to a power function of the average scale factor. We have also discussed some important physical aspects of the model which is in agreement with the modern cosmological observations.


2021 ◽  
Vol 104 (2) ◽  
Author(s):  
Mikko Partanen ◽  
Jukka Tulkki

Author(s):  
Keith Glennon ◽  
Peter West

We study in detail the irreducible representation of [Formula: see text] theory that corresponds to massless particles. This has little algebra [Formula: see text] and contains 128 physical states that belong to the spinor representation of [Formula: see text]. These are the degrees of freedom of maximal supergravity in eleven dimensions. This smaller number of the degrees of freedom, compared to what might be expected, is due to an infinite number of duality relations which in turn can be traced to the existence of a subaglebra of [Formula: see text] which forms an ideal and annihilates the representation. We explain how these features are inherited into the covariant theory. We also comment on the remarkable similarity between how the bosons and fermions arise in [Formula: see text] theory.


Universe ◽  
2020 ◽  
Vol 6 (12) ◽  
pp. 236
Author(s):  
Rodolfo Gambini ◽  
Jorge Pullin

We review the Montevideo Interpretation of quantum mechanics, which is based on the use of real clocks to describe physics, using the framework that was recently introduced by Höhn, Smith, and Lock to treat the problem of time in generally covariant systems. These new methods, which solve several problems in the introduction of a notion of time in such systems, do not change the main results of the Montevideo Interpretation. The use of the new formalism makes the construction more general and valid for any system in a quantum generally covariant theory. We find that, as in the original formulation, a fundamental mechanism of decoherence emerges that allows for supplementing ordinary environmental decoherence and avoiding its criticisms. The recent results on quantum complexity provide additional support to the type of global protocols that are used to prove that within ordinary—unitary—quantum mechanics, no definite event—an outcome to which a probability can be associated—occurs. In lieu of this, states that start in a coherent superposition of possible outcomes always remain as a superposition. We show that, if one takes into account fundamental inescapable uncertainties in measuring length and time intervals due to general relativity and quantum mechanics, the previously mentioned global protocols no longer allow for distinguishing whether the state is in a superposition or not. One is left with a formulation of quantum mechanics purely defined in quantum mechanical terms without any reference to the classical world and with an intrinsic operational definition of quantum events that does not need external observers.


Entropy ◽  
2020 ◽  
Vol 22 (6) ◽  
pp. 696 ◽  
Author(s):  
Claudio Cremaschini ◽  
Massimo Tessarotto

The stochastic character of the cosmological constant arising from the non-linear quantum-vacuum Bohm interaction in the framework of the manifestly-covariant theory of quantum gravity (CQG theory) is pointed out. This feature is shown to be consistent with the axiomatic formulation of quantum gravity based on the hydrodynamic representation of the same CQG theory developed recently. The conclusion follows by investigating the indeterminacy properties of the probability density function and its representation associated with the quantum gravity state, which corresponds to a hydrodynamic continuity equation that satisfies the unitarity principle. As a result, the corresponding form of stochastic quantum-modified Einstein field equations is obtained and shown to admit a stochastic cosmological de Sitter solution for the space-time metric tensor. The analytical calculation of the stochastic averages of relevant physical observables is obtained. These include in particular the radius of the de Sitter sphere fixing the location of the event horizon and the expression of the Hawking temperature associated with the related particle tunneling effect. Theoretical implications for cosmology and field theories are pointed out.


New Astronomy ◽  
2020 ◽  
Vol 77 ◽  
pp. 101353 ◽  
Author(s):  
Koijam Manihar Singh ◽  
Sanjay Mandal ◽  
Longjam Parbati Devi ◽  
P.K. Sahoo

Sign in / Sign up

Export Citation Format

Share Document