scholarly journals Conditional probability distributions of finite absorbing quantum walks

2020 ◽  
Vol 101 (3) ◽  
Author(s):  
Parker Kuklinski
2005 ◽  
Vol 42 (02) ◽  
pp. 426-445
Author(s):  
Raymond Brummelhuis ◽  
Dominique Guégan

We study the asymptotic tail behavior of the conditional probability distributions of r t+k and r t+1+⋯+r t+k when (r t ) t∈ℕ is a GARCH(1, 1) process. As an application, we examine the relation between the extreme lower quantiles of these random variables.


1982 ◽  
Vol 19 (3) ◽  
pp. 695-701 ◽  
Author(s):  
Ward Whitt

Karlin and Rinott (1980) introduced and investigated concepts of multivariate total positivity (TP2) and multivariate monotone likelihood ratio (MLR) for probability measures on Rn These TP and MLR concepts are intimately related to supermodularity as discussed in Topkis (1968), (1978) and the FKG inequality of Fortuin, Kasteleyn and Ginibre (1971). This note points out connections between these concepts and uniform conditional stochastic order (ucso) as defined in Whitt (1980). ucso holds for two probability distributions if there is ordinary stochastic order for the corresponding conditional probability distributions obtained by conditioning on subsets from a specified class. The appropriate subsets to condition on for ucso appear to be the sublattices of Rn. Then MLR implies ucso, with the two orderings being equivalent when at least one of the probability measures is TP2.


1989 ◽  
Vol 45 (2) ◽  
pp. 163-165 ◽  
Author(s):  
D. Velmurugan ◽  
H. A. Hauptman ◽  
S. A. Potter

Applications are considered of the conditional probability distributions of the one-phase structure seminvariants in the monoclinic and orthorhombic systems when anomalous scatterers are present. Test results with error-free data show accurate estimates of seminvariants, the accuracy varying with the complexity of the structure and with the number and strength of the anomalous scatterers.


2010 ◽  
Vol 10 (5&6) ◽  
pp. 420-434
Author(s):  
C.-F. Chiang ◽  
D. Nagaj ◽  
P. Wocjan

We present an efficient general method for realizing a quantum walk operator corresponding to an arbitrary sparse classical random walk. Our approach is based on Grover and Rudolph's method for preparing coherent versions of efficiently integrable probability distributions \cite{GroverRudolph}. This method is intended for use in quantum walk algorithms with polynomial speedups, whose complexity is usually measured in terms of how many times we have to apply a step of a quantum walk \cite{Szegedy}, compared to the number of necessary classical Markov chain steps. We consider a finer notion of complexity including the number of elementary gates it takes to implement each step of the quantum walk with some desired accuracy. The difference in complexity for various implementation approaches is that our method scales linearly in the sparsity parameter and poly-logarithmically with the inverse of the desired precision. The best previously known general methods either scale quadratically in the sparsity parameter, or polynomially in the inverse precision. Our approach is especially relevant for implementing quantum walks corresponding to classical random walks like those used in the classical algorithms for approximating permanents \cite{Vigoda, Vazirani} and sampling from binary contingency tables \cite{Stefankovi}. In those algorithms, the sparsity parameter grows with the problem size, while maintaining high precision is required.


Optics ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 236-250
Author(s):  
Mahesh N. Jayakody ◽  
Asiri Nanayakkara ◽  
Eliahu Cohen

We theoretically analyze the case of noisy Quantum walks (QWs) by introducing four qubit decoherence models into the coin degree of freedom of linear and cyclic QWs. These models include flipping channels (bit flip, phase flip and bit-phase flip), depolarizing channel, phase damping channel and generalized amplitude damping channel. Explicit expressions for the probability distribution of QWs on a line and on a cyclic path are derived under localized and delocalized initial states. We show that QWs which begin from a delocalized state generate mixture probability distributions, which could give rise to useful algorithmic applications related to data encoding schemes. Specifically, we show how the combination of delocalzed initial states and decoherence can be used for computing the binomial transform of a given set of numbers. However, the sensitivity of QWs to noisy environments may negatively affect various other applications based on QWs.


Sign in / Sign up

Export Citation Format

Share Document