scholarly journals Analyzing photon-count heralded entanglement generation between solid-state spin qubits by decomposing the master-equation dynamics

2020 ◽  
Vol 102 (3) ◽  
Author(s):  
Stephen C. Wein ◽  
Jia-Wei Ji ◽  
Yu-Feng Wu ◽  
Faezeh Kimiaee Asadi ◽  
Roohollah Ghobadi ◽  
...  
2021 ◽  
pp. 259-273
Author(s):  
Ray LaPierre
Keyword(s):  

2003 ◽  
Vol 68 (19) ◽  
Author(s):  
C. J. Wellard ◽  
L. C. L. Hollenberg ◽  
F. Parisoli ◽  
L. M. Kettle ◽  
H.-S. Goan ◽  
...  

2021 ◽  
Author(s):  
Demitry Farfurnik ◽  
Harjot Singh ◽  
Zhouchen Luo ◽  
Allan S. Bracker ◽  
Samuel G. Carter ◽  
...  

2021 ◽  
Author(s):  
Demitry Farfurnik ◽  
Harjot Singh ◽  
Zhouchen Luo ◽  
Allan Bracker ◽  
Sam Carter ◽  
...  

Abstract Noise spectroscopy elucidates the fundamental noise sources in spin systems, which is essential for developing spin qubits with long coherence times for quantum information processing, communication, and sensing. But noise spectroscopy typically relies on microwave coherent spin control to extract the noise spectrum, which becomes infeasible when there are high-frequency noise components stronger than the available microwave power. Here, we demonstrate an alternative all-optical approach to performing noise spectroscopy. Our approach utilises coherent Raman rotations of the spin state with controlled timing and phase to implement Carr-Purcell-Meiboom-Gill (CPMG) pulse sequences. Analysing the spin dynamics under these sequences enables us to extract the noise spectrum of a dense ensemble of nuclear spins interacting with a single spin in a quantum dot, which has thus far only been modelled theoretically. By providing large spectral bandwidths of over 100 MHz, our Raman-based approach could serve as an important tool to study spin dynamics and decoherence mechanisms for a broad range of solid-state spin qubits.


2013 ◽  
Vol 110 (6) ◽  
Author(s):  
Hendrik Weimer ◽  
Norman Y. Yao ◽  
Mikhail D. Lukin
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document