scholarly journals Fast inversion, preconditioned quantum linear system solvers, fast Green's-function computation, and fast evaluation of matrix functions

2021 ◽  
Vol 104 (3) ◽  
Author(s):  
Yu Tong ◽  
Dong An ◽  
Nathan Wiebe ◽  
Lin Lin
2014 ◽  
Vol 71 (1) ◽  
Author(s):  
Siti Zulaiha Aspon ◽  
Ali Hassan Mohamed Murid ◽  
Mohamed M. S. Nasser ◽  
Hamisan Rahmat

This research is about computing the Green’s function on doubly connected regions by using the method of boundary integral equation. The method depends on solving a Dirichlet problem. The Dirichlet problem is then solved using a uniquely solvable Fredholm integral equation on the boundary of the region. The kernel of this integral equation is the generalized Neumann kernel. The method for solving this integral equation is by using the Nystrӧm method with trapezoidal rule to discretize it to a linear system. The linear system is then solved by the Gauss elimination method. Mathematica plots of Green’s functions for several test regions are also presented.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Nianying Li ◽  
Li Yin ◽  
Honglian You

In this paper, we study the pointwise estimates of solutions to the viscous Cahn-Hilliard equation with the inertial term in multidimensions. We use Green’s function method. Our approach is based on a detailed analysis on the Green’s function of the linear system. And we get the solution’s Lp convergence rate.


Author(s):  
Samaneh Fooladi ◽  
Tribikram Kundu

Elastodynamic Green's function for anisotropic solids is required for wave propagation modeling in composites. Such modeling is needed for the interpretation of experimental results generated by ultrasonic excitation or mechanical vibration-based nondestructive evaluation tests of composite structures. For isotropic materials, the elastodynamic Green’s function can be obtained analytically. However, for anisotropic solids, numerical integration is required for the elastodynamic Green's function computation. It can be expressed as a summation of two integrals—a singular integral and a nonsingular (or regular) integral. The regular integral over the surface of a unit hemisphere needs to be evaluated numerically and is responsible for the majority of the computational time for the elastodynamic Green's function calculation. In this paper, it is shown that for transversely isotropic solids, which form a major portion of anisotropic materials, the integration domain of the regular part of the elastodynamic time-harmonic Green's function can be reduced from a hemisphere to a quarter-sphere. The analysis is performed in the frequency domain by considering time-harmonic Green's function. This improvement is then applied to a numerical example where it is shown that it nearly halves the computational time. This reduction in computational effort is important for a boundary element method and a distributed point source method whose computational efficiencies heavily depend on Green's function computational time.


Sign in / Sign up

Export Citation Format

Share Document