Computational study of a molecular collision process in the presence of an intense radiation field: Enhanced quenching of F by Xe in the 248-nm light of the KrF laser

1978 ◽  
Vol 17 (2) ◽  
pp. 546-550 ◽  
Author(s):  
Paul L. DeVries ◽  
Maurice S. Mahlab ◽  
Thomas F. George
2019 ◽  
Vol 489 (2) ◽  
pp. 2572-2594 ◽  
Author(s):  
Mengtao Tang ◽  
Daniel P Stark ◽  
Jacopo Chevallard ◽  
Stéphane Charlot

ABSTRACT Galaxies in the reionization era have been shown to have prominent [O iii] + H β emission. Little is known about the gas conditions and radiation field of this population, making it challenging to interpret the spectra emerging at z ≳ 6. Motivated by this shortcoming, we have initiated a large MMT spectroscopic survey identifying rest-frame optical emission lines in 227 intense [O iii] emitting galaxies at 1.3 < z < 2.4. This sample complements the MOSDEF and KBSS surveys, extending to much lower stellar masses ($10^7\!-\!10^8 \, \mathrm{M}_\odot$) and larger specific star formation rates (5–300 Gyr−1), providing a window on galaxies directly following a burst or recent upturn in star formation. The hydrogen ionizing production efficiency (ξion) is found to increase with the [O iii] equivalent width (EW), in a manner similar to that found in local galaxies. We describe how this relationship helps explain the anomalous success rate in identifying Ly α emission in z ≳ 7 galaxies with strong [O iii] + H β emission. We probe the impact of the intense radiation field on the ISM using O32 and Ne3O2, two ionization-sensitive indices. Both are found to scale with the [O iii] EW, revealing extreme ionization conditions not commonly seen in older and more massive galaxies. In the most intense line emitters, the indices have very large average values (O32 = 9.1, Ne3O2 = 0.5) that have been shown to be linked to ionizing photon escape. We discuss implications for the nature of galaxies most likely to have O32 values associated with significant LyC escape. Finally we consider the optimal strategy for JWST spectroscopic investigations of galaxies at z ≳ 10 where the strongest rest-frame optical lines are no longer visible with NIRSpec.


1998 ◽  
Vol 184 ◽  
pp. 415-416
Author(s):  
Y. Tajima ◽  
J. Fukue

The radiative winds from a geometrically thin accretion disk are studied. The effect of radiation drag which causes in the intense radiation fields around the accretion disk is examined recently. Then, we numerically consider the radiatively-accelerated accretion-disk winds which consist of ionized gas particles, taking into account radiation drag of the order ofv/c.


1992 ◽  
Vol 63 (10) ◽  
pp. 5101-5103 ◽  
Author(s):  
T. D. Shepard ◽  
C. J. Keane ◽  
L. J. Suter ◽  
J. Abdallah

2020 ◽  
Vol 6 (1) ◽  
pp. 117-122
Author(s):  
K. Giri ◽  
A. Bhandari

Computational calculation of energy loss and study of damage profiles during ionic implantation by gallium ions on germanium had been carried out. The required energies for doping of gallium ion on germanium, in order to obtain maximum damage at 600 Å, were calculated using SRIM; Stopping and Range of Ions in Matter. The ions when implanted independently on germanium causes the production of germanium recoils, vacancy-interstitial pairs, and phonons during the collision process. For 130 keV gallium ion, the energy used for ionization, phonon production and vacancies creation are 37.713 keV (29.01% of incident energy), 90.006 keV (64.29% of incident energy) and 8.71 keV (6.7% of incident energy) respectively. The amount of target displacement, replacement collisions and vacancies were also evaluated. Doping of gallium ions on germanium also reveals that the energy loss due to nuclear stopping was greater than electronic stopping.


2019 ◽  
Vol 881 ◽  
pp. 772-793 ◽  
Author(s):  
Sophie A. W. Calabretto ◽  
James P. Denier ◽  
Benjamin Levy

The unsteady flow due to a sphere, immersed in a quiescent fluid, and suddenly rotated, is a paradigm for the development of unsteady boundary layers and their collision. Such a collision arises when the boundary layers on the surface of the sphere are advected towards the equator, where they collide, serving to generate a radial jet. We present the first particle image velocimetry measurements of this collision process, the resulting starting vortex and development of the radial jet. Coupled with new computations, we demonstrate that the post-collision steady flow detaches smoothly from the sphere’s surface, in qualitative agreement with the analysis of Stewartson (Grenzschichtforschung/Boundary Layer Research (ed. H. Görtler), Springer, 1958, pp. 60–70), with no evidence of a recirculation zone, contrary to the conjectured structure of Smith & Duck (Q. J. Mech. Appl. Maths, vol. 20, 1977, pp. 143–156).


1986 ◽  
Vol 34 (3) ◽  
pp. 1024-1030 ◽  
Author(s):  
P. Kálmán ◽  
J. Bergou

1990 ◽  
Vol 41 (3) ◽  
pp. 1744-1746 ◽  
Author(s):  
Gunadya Bandarage ◽  
Alfred Maquet ◽  
J. Cooper

Sign in / Sign up

Export Citation Format

Share Document