An experimental and computational study of the post-collisional flow induced by an impulsively rotated sphere

2019 ◽  
Vol 881 ◽  
pp. 772-793 ◽  
Author(s):  
Sophie A. W. Calabretto ◽  
James P. Denier ◽  
Benjamin Levy

The unsteady flow due to a sphere, immersed in a quiescent fluid, and suddenly rotated, is a paradigm for the development of unsteady boundary layers and their collision. Such a collision arises when the boundary layers on the surface of the sphere are advected towards the equator, where they collide, serving to generate a radial jet. We present the first particle image velocimetry measurements of this collision process, the resulting starting vortex and development of the radial jet. Coupled with new computations, we demonstrate that the post-collision steady flow detaches smoothly from the sphere’s surface, in qualitative agreement with the analysis of Stewartson (Grenzschichtforschung/Boundary Layer Research (ed. H. Görtler), Springer, 1958, pp. 60–70), with no evidence of a recirculation zone, contrary to the conjectured structure of Smith & Duck (Q. J. Mech. Appl. Maths, vol. 20, 1977, pp. 143–156).

2020 ◽  
Vol 328 ◽  
pp. 05004
Author(s):  
Pavel Procházka ◽  
Václav Uruba

The Particle Image Velocimetry is utilized to investigate flow behind a cylinder of finite length with subcritical value of Aspect Ratio (AR). The cylinder is submitted to uniform freestream with very low intensity of turbulence and thin laminar boundary layer. The flow field cannot be expected as 2D even for time-averaged quantities. The Strouhal number is evaluated in various planes of measurement. The wake is fully turbulent and is composed of many streamwise and spanwise-oriented structures. Such complex flow is very convenient to be subjected to dynamical decomposition analysis.


Author(s):  
K Anand ◽  
KT Ganesh

The effect of pressure gradient on a separated boundary layer past the leading edge of an airfoil model is studied experimentally using electronically scanned pressure (ESP) and particle image velocimetry (PIV) for a Reynolds number ( Re) of 25,000, based on leading-edge diameter ( D). The features of the boundary layer in the region of separation and its development past the reattachment location are examined for three cases of β (−30°, 0°, and +30°). The bubble parameters such as the onset of separation and transition and the reattachment location are identified from the averaged data obtained from pressure and velocity measurements. Surface pressure measurements obtained from ESP show a surge in wall static pressure for β = −30° (flap deflected up), while it goes down for β = +30° (flap deflected down) compared to the fundamental case, β = 0°. Particle image velocimetry results show that the roll up of the shear layer past the onset of separation is early for β = +30°, owing to higher amplification of background disturbances compared to β = 0° and −30°. Downstream to transition location, the instantaneous field measurements reveal a stretched, disoriented, and at instances bigger vortices for β = +30°, whereas a regular, periodically shed vortices, keeping their identity past the reattachment location, is observed for β = 0° and −30°. Above all, this study presents a new insight on the features of a separation bubble receiving a disturbance from the downstream end of the model, and these results may serve as a bench mark for future studies over an airfoil under similar environment.


2018 ◽  
Vol 841 ◽  
pp. 1-27 ◽  
Author(s):  
Leon Vanstone ◽  
Mustafa Nail Musta ◽  
Serdar Seckin ◽  
Noel Clemens

This study investigates the mean flow structure of two shock-wave boundary-layer interactions generated by moderately swept compression ramps in a Mach 2 flow. The ramps have a compression angle of either $19^{\circ }$ or $22.5^{\circ }$ and a sweep angle of $30^{\circ }$. The primary diagnostic methods used for this study are surface-streakline flow visualization and particle image velocimetry. The shock-wave boundary-layer interactions are shown to be quasi-conical, with the intermittent region, separation line and reattachment line all scaling in a self-similar manner outside of the inception region. This is one of the first studies to investigate the flow field of a swept ramp using particle image velocimetry, allowing more sensitive measurements of the velocity flow field than previously possible. It is observed that the streamwise velocity component outside of the separated flow reaches the quasi-conical state at the same time as the bulk surface flow features. However, the streamwise and cross-stream components within the separated flow take longer to recover to the quasi-conical state, which indicates that the inception region for these low-magnitude velocity components is actually larger than was previously assumed. Specific scaling laws reported previously in the literature are also investigated and the results of this study are shown to scale similarly to these related interactions. Certain limiting cases of the scaling laws are explored that have potential implications for the interpretation of cylindrical and quasi-conical scaling.


2002 ◽  
Vol 467 ◽  
pp. 41-56 ◽  
Author(s):  
GAETANO MARIA DI CICCA ◽  
GAETANO IUSO ◽  
PIER GIORGIO SPAZZINI ◽  
MICHELE ONORATO

Particle image velocimetry has been applied to the study of a canonical turbulent boundary layer and to a turbulent boundary layer forced by transversal wall oscillations. This work is part of the research programme at the Politecnico di Torino aerodynamic laboratory with the objective of investigating the response of near-wall turbulence to external perturbations. Results are presented for the optimum oscillation period of 100 viscous time units and for an oscillation amplitude of 320 viscous units. As expected, turbulent velocity fluctuations are considerably reduced by the wall oscillations. Particle image velocimetry has allowed comparisons between the canonical and forced flows in an attempt to find the physical mechanisms by which the wall oscillation influences the near-wall organized motions.


Sign in / Sign up

Export Citation Format

Share Document