scholarly journals Comment on “Efficient high-fidelity quantum computation using matter qubits and linear optics”

2005 ◽  
Vol 72 (5) ◽  
Author(s):  
Simon Charles Benjamin
2008 ◽  
Vol 8 (10) ◽  
pp. 977-985
Author(s):  
Z.-Y. Xu ◽  
M. Feng ◽  
W.-M. Zhang

We investigate the possibility to have electron-pairs in decoherence-free subspace (DFS), by means of the quantum-dot cellular automata (QCA) and single-spin rotations, to deterministically carry out a universal quantum computation with high-fidelity. We show that our QCA device with electrons tunneling in two dimensions is very suitable for DFS encoding, and argue that our design favors a scalable quantum computation robust to collective dephasing errors.


2001 ◽  
Vol 1 (Special) ◽  
pp. 13-19
Author(s):  
G.J. Milburn ◽  
T. Ralph ◽  
A. White ◽  
E. Knill ◽  
R. Laflamme

Two qubit gates for photons are generally thought to require exotic materials with huge optical nonlinearities. We show here that, if we accept two qubit gates that only work conditionally, single photon sources, passive linear optics and particle detectors are sufficient for implementing reliable quantum algorithms. The conditional nature of the gates requires feed-forward from the detectors to the optical elements. Without feed forward, non-deterministic quantum computation is possible. We discuss one proposed single photon source based on the surface acoustic wave guiding of single electrons.


2008 ◽  
Vol 8 (5) ◽  
pp. 386-398
Author(s):  
Y.-T. Chen ◽  
G. Bjork

We address the problem of generation and detection of the four mutually unbiased biphoton polarization-qutrit bases by linear optics. First, the generation of the bases is studied. Our numeric results show that the linear optics method can be used to generate the 4 mutually unbiased basis qutrit states probabilistically with high fidelity. Second, we investigate whether or not linear polarization-optics components are sufficient to realize the simultaneous detection of the qutrit states forming a complete basis. Analytical results show that every state in two of the bases, namely only half of the 4 mutually unbiased bases qutrit states can be identified.


Sign in / Sign up

Export Citation Format

Share Document