scholarly journals Quantum Computation with Linear Optics

Author(s):  
C. Adami ◽  
N. J. Cerf
2001 ◽  
Vol 1 (Special) ◽  
pp. 13-19
Author(s):  
G.J. Milburn ◽  
T. Ralph ◽  
A. White ◽  
E. Knill ◽  
R. Laflamme

Two qubit gates for photons are generally thought to require exotic materials with huge optical nonlinearities. We show here that, if we accept two qubit gates that only work conditionally, single photon sources, passive linear optics and particle detectors are sufficient for implementing reliable quantum algorithms. The conditional nature of the gates requires feed-forward from the detectors to the optical elements. Without feed forward, non-deterministic quantum computation is possible. We discuss one proposed single photon source based on the surface acoustic wave guiding of single electrons.


2012 ◽  
Vol 26 (16) ◽  
pp. 1250102
Author(s):  
LIU YE ◽  
XUE-KE SONG ◽  
JIE YANG ◽  
QUN YANG ◽  
YANG-CHENG MA

Quantum cloning relates to the security of quantum computation and quantum communication. In this paper, firstly we propose a feasible unified scheme to implement optimal 1 → 2 universal, 1 → 2 asymmetric and symmetric phase-covariant cloning, and 1 → 2 economical phase-covariant quantum cloning machines only via a beam splitter. Then 1 → 3 economical phase-covariant quantum cloning machines also can be realized by adding another beam splitter in context of linear optics. The scheme is based on the interference of two photons on a beam splitter with different splitting ratios for vertical and horizontal polarization components. It is shown that under certain condition, the scheme is feasible by current experimental technology.


Sign in / Sign up

Export Citation Format

Share Document