scholarly journals Belief propagation algorithm for computing correlation functions in finite-temperature quantum many-body systems on loopy graphs

2008 ◽  
Vol 77 (5) ◽  
Author(s):  
David Poulin ◽  
Ersen Bilgin
2008 ◽  
Vol 8 (10) ◽  
pp. 986-1000
Author(s):  
D. Poulin ◽  
Y. Chung

We address the problem of decoding sparse quantum error correction codes. For Pauli channels, this task can be accomplished by a version of the belief propagation algorithm used for decoding sparse classical codes. Quantum codes pose two new challenges however. Firstly, their Tanner graph unavoidably contain small loops which typically undermines the performance of belief propagation. Secondly, sparse quantum codes are by definition highly degenerate. The standard belief propagation algorithm does not exploit this feature, but rather it is impaired by it. We propose heuristic methods to improve belief propagation decoding, specifically targeted at these two problems. While our results exhibit a clear improvement due to the proposed heuristic methods, they also indicate that the main source of errors in the quantum coding scheme remains in the decoding.


2008 ◽  
Vol 8 (10) ◽  
pp. 986-1000
Author(s):  
D. Poulin ◽  
Y. Chung

We address the problem of decoding sparse quantum error correction codes. For Pauli channels, this task can be accomplished by a version of the belief propagation algorithm used for decoding sparse classical codes. Quantum codes pose two new challenges however. Firstly, their Tanner graph unavoidably contain small loops which typically undermines the performance of belief propagation. Secondly, sparse quantum codes are by definition highly degenerate. The standard belief propagation algorithm does not exploit this feature, but rather it is impaired by it. We propose heuristic methods to improve belief propagation decoding, specifically targeted at these two problems. While our results exhibit a clear improvement due to the proposed heuristic methods, they also indicate that the main source of errors in the quantum coding scheme remains in the decoding.


Author(s):  
Juan Pérez-Mercade

We present a scenario that is useful for describing hierarchies within classes of many-component systems. Although this scenario may be quite general, it will be illustrated in the case of many-body systems whose space-time evolution can be described by a class of stochastic parabolic nonlinear partial differential equations. The stochastic component we will consider is in the form of additive noise, but other forms of noise such as multiplicative noise may also be incorporated. It will turn out that hierarchical behavior is only one of a class of asymptotic behaviors that can emerge when an out-of-equilibrium system is coarse grained. This phenomenology can be analyzed and described using the renormalization group (RG) [6, 15]. It corresponds to the existence of complex fixed points for the parameters characterizing the system. As is well known (see, for example, Hochberg and Perez-Mercader [8] and Onuki [12] and the references cited there), parameters such as viscosities, noise couplings, and masses evolve with scale. In other words, their values depend on the scale of resolution at which the system is observed (examined). These scaledependent parameters are called effective parameters. The evolutionary changes due to coarse graining or, equivalently, changes in system size, are analyzed using the RG and translate into differential equations for the probability distribution function [8] of the many-body system, or the n-point correlation functions and the effective parameters. Under certain conditions and for systems away from equilibrium, some of the fixed points of the equations describing the scale dependence of the effective parameters can be complex; this translates into complex anomalous dimensions for the stochastic fields and, therefore, the correlation functions of the field develop a complex piece. We will see that basic requirements such as reality of probabilities and maximal correlation lead, in the case of complex fixed points, to hierarchical behavior. This is a first step for the generalization of extensive behavior as described by real power laws to the case of complex exponents and the study of hierarchical behavior.


Sign in / Sign up

Export Citation Format

Share Document