On the iterative decoding of sparse quantum codes

2008 ◽  
Vol 8 (10) ◽  
pp. 986-1000
Author(s):  
D. Poulin ◽  
Y. Chung

We address the problem of decoding sparse quantum error correction codes. For Pauli channels, this task can be accomplished by a version of the belief propagation algorithm used for decoding sparse classical codes. Quantum codes pose two new challenges however. Firstly, their Tanner graph unavoidably contain small loops which typically undermines the performance of belief propagation. Secondly, sparse quantum codes are by definition highly degenerate. The standard belief propagation algorithm does not exploit this feature, but rather it is impaired by it. We propose heuristic methods to improve belief propagation decoding, specifically targeted at these two problems. While our results exhibit a clear improvement due to the proposed heuristic methods, they also indicate that the main source of errors in the quantum coding scheme remains in the decoding.

2008 ◽  
Vol 8 (10) ◽  
pp. 986-1000
Author(s):  
D. Poulin ◽  
Y. Chung

We address the problem of decoding sparse quantum error correction codes. For Pauli channels, this task can be accomplished by a version of the belief propagation algorithm used for decoding sparse classical codes. Quantum codes pose two new challenges however. Firstly, their Tanner graph unavoidably contain small loops which typically undermines the performance of belief propagation. Secondly, sparse quantum codes are by definition highly degenerate. The standard belief propagation algorithm does not exploit this feature, but rather it is impaired by it. We propose heuristic methods to improve belief propagation decoding, specifically targeted at these two problems. While our results exhibit a clear improvement due to the proposed heuristic methods, they also indicate that the main source of errors in the quantum coding scheme remains in the decoding.


Author(s):  
Dongsheng Wang ◽  
Yunjiang Wang ◽  
Ningping Cao ◽  
Bei Zeng ◽  
Raymond Lafflamme

Abstract In this work, we develop the theory of quasi-exact fault-tolerant quantum (QEQ) computation, which uses qubits encoded into quasi-exact quantum error-correction codes (``quasi codes''). By definition, a quasi code is a parametric approximate code that can become exact by tuning its parameters. The model of QEQ computation lies in between the two well-known ones: the usual noisy quantum computation without error correction and the usual fault-tolerant quantum computation, but closer to the later. Many notions of exact quantum codes need to be adjusted for the quasi setting. Here we develop quasi error-correction theory using quantum instrument, the notions of quasi universality, quasi code distances, and quasi thresholds, etc. We find a wide class of quasi codes which are called valence-bond-solid codes, and we use them as concrete examples to demonstrate QEQ computation.


Sign in / Sign up

Export Citation Format

Share Document