scholarly journals First-principles calculation of ballistic current from electron-hole interaction

2021 ◽  
Vol 104 (23) ◽  
Author(s):  
Zhenbang Dai ◽  
Andrew M. Rappe
2021 ◽  
Author(s):  
Yanqun Shao ◽  
Keke Feng ◽  
Jie Guo ◽  
Rongrong Zhang ◽  
Sijiang He ◽  
...  

Abstract Modification is one of the most important and effective methods to improve the photoelectrocatalytic (PEC) performance of ZnO. In this paper, the RuxZn1-xO/Ti electrodes were prepared by thermal decomposition method and the effect of Ru content on those electrodes’ electronic structure was analyzed through the first-principles calculation. Various tests were also performed to observe the microstructures and PEC performance. The results showed that as the Ru4+ transferred into ZnO lattice and replaced a number of Zn2+, the conduction band of ZnO moved downward and the valence band went upward. The number of photogenerated electron-hole pairs increased as the impurity levels appeared in the band gap. In addition, ZnO nanorods exhibited a smaller grain size and a rougher surface under the effect of Ru. Meanwhile, the RuO2 nanoparticles on the surface of ZnO nanorods acted as the electron-transfer channel, helping electrons transfer to the counter electrode and delaying the recombination of the electron-hole pairs. Specifically, the RuxZn1-xO/Ti electrodes with 9.375mol% Ru exhibited the best PEC performance with a rhodamine B (RhB) removal rate of 97%, much higher than the combination of simple electrocatalysis (EC 12%) and photocatalysis (PC 50%), confirming the synergy of photoelectrocatalysis.


Author(s):  
Yanqun Shao ◽  
Keke Feng ◽  
Jie Guo ◽  
Rongrong Zhang ◽  
Sijiang He ◽  
...  

AbstractModification is one of the most important and effective methods to improve the photoelectrocatalytic (PEC) performance of ZnO. In this paper, the RuxZn1−xO/Ti electrodes were prepared by thermal decomposition method and the effect of Ru content on those electrodes’ electronic structure was analyzed through the first-principles calculation. Various tests were also performed to observe the microstructures and PEC performance. The results showed that as the Ru4+ transferred into ZnO lattice and replaced a number of Zn2+, the conduction band of ZnO moved downward and the valence band went upward. The number of photogenerated electron-hole pairs increased as the impurity levels appeared in the band gap. In addition, ZnO nanorods exhibited a smaller grain size and a rougher surface under the effect of Ru. Meanwhile, the RuO2 nanoparticles on the surface of ZnO nanorods acted as the electron-transfer channel, helping electrons transfer to the counter electrode and delaying the recombination of the electron-hole pairs. Specifically, the RuxZn1−xO/Ti electrodes with 9.375 mol% Ru exhibited the best PEC performance with a rhodamine B (RhB) removal rate of 97%, much higher than the combination of electrocatalysis (EC, 12%) and photocatalysis (PC, 50%), confirming the synergy of photoelectrocatalysis.


1981 ◽  
Vol 42 (C6) ◽  
pp. C6-625-C6-627 ◽  
Author(s):  
P. E. Van Camp ◽  
V. E. Van Doren ◽  
J. T. Devreese

Sign in / Sign up

Export Citation Format

Share Document